

Scanned and converted to PDF by HansO, 2004

INHOUD

Blz. 1 De Philips Pionier Senior-serie
Over wisselspanning en radiobuizen
Monteren en solderen
Het schema van de super-afstemeenheid Pionier S 103
Bouwbeschrijving Pionier Senior super-afstemeenheid S 103
Het afregelen
Enkele praktische wenken
Het schema van de super-afstemeenheid Pionier S 113
Bouwbeschrijving Pionier Senior super-afstemeenheid S 113
Voedingspakket Pionier S 20 V
Technische gegevens
Inhoud van de aanvullingsdoos Pionier S 102 A
Inhoud van de bouwdoos Pionier S 113
Inhoud van het voedingspakket Pionier S 20 V
Overzicht Philips Pionier Senior-serie

DE PHILIPS PIONIER SENIOR-SERIE

Het zelf maken van radio-ontvangtoestellen, versterkers en andere elektronische apparaten biedt duizenden beginnende en gevorderde amateurs een ontspanning, die veel meer betekent dan louter vrijetijdsbesteding. De geest van het pionieren is ook in de nieuwere ontwikkelingen van de elektronentechniek bewaard gebleven en dat maakt van de radio-hobby een interessante en instructieve bezigheid, waarvan de resultaten bovendien vaak een grote praktische waarde hebben.
Met de Philips „Pionier"-bouwdozen is het voor iedereen mogelijk, zelf een ontvanger of versterker te vervaardigen. Jongeren van 10 jaar af kunnen (zonder te hoeven solderen) hun eigen „Pionier Junior"-toestel in elkaar zetten. De „Pionier Senior"-bouwdozen gaan een stapje verder in de radiotechniek. Deze serie bestaat uit een opbouwsysteem van bouwdozen voor verschillende radio-afstemeenheden en versterkers, welke zijn uitgevoerd met moderne radiobuizen en die gevoed worden uit het elektriciteitsnet. Bij het bouwen van deze toestelletjes moet worden gesoldeerd. Voor het verkrijgen van luidsprekerweergave van de radiozenders kan een afstemeenheid worden aangesloten op één van de Pionier Senior-versterkers, die tevens de voor de voeding van de afstemeenheden benodigde elektrische spanningen kunnen leveren, of op een willekeurige andere grammofoonversterker. In het laatste geval zal in het algemeen een speciaal voedingsgedeelte in de afstemeenheid worden ingebouwd, dat verkrijgbaar is in pakket Pionier S 20 V .
De eenvoudigste afstemeenheid is de Pionier S 101 (met één afstemkring), die later desgewenst kan worden uitgebreid tot de tweekrings-afstemeenheid Pionier S 102. De volgende stap is het uitbreiden van de Pionier S 102 tot de super-afstemeenheid Pionier S 103, waarvoor de onderdelen verkrijgbaar zijn in de aanvullingsdoos Pionier S 102 A. De super-afstemeenheid werkt volgens dezelfde principes als de normaal in de handel verkrijgbare, duurdere radiotoestellen en behalve de Nederlandse kan er een zeer groot aantal buitenlandse zenders mee worden beluisterd.
Voor wie ineens een super-afstemeenheid wil maken, is de bouwdoos Pionier S 113 bestemd. Dit pakket bevat alle onderdelen voor het vervaardigen
van een complete AM-afstemeenheid (excl. voeding), met dezelfde mogelijkheden als de Pionier S 103.
Verder zijn er twee bouwdozen voor Pionier Senior-versterkers: de Pionier S 201 (0,5 watt-versterker, voor luidsprekerweergave op kamersterkte) en de Pionier S 202 (2 watt-versterker, voor krachtiger luidsprekerweergave).
Dit boekje bevat alle aanwijzigingen voor het uitbreiden van de tweekringsafstemeenheid Pionier S 102 tot de ,super" Pionier S 103, voor het bouwen van de AM-afstemeenheid Pionier S 113 en voor het inbouwen van een voedingsgedeelte in deze beide. Verder zijn in deze handleiding de voorschriften opgenomen voor het afregelen van de afstemeenheden, de schemabeschrijvingen en enkele mogelijkheden van variatie op de standaard-bouw (o.a. een uitbreiding voor de ontvangst van korte- en/of langegolfzenders en voor het aansluiten van een afstemindicator). Voor degenen die nog geen grote ervaring hebben op het gebied van ,"de radio", zijn twee hoofdstukjes toegevoegd over wisselspanning en radiobuizen en over monteren en solderen. Het is niet noodzakelijk, al deze hoofdstukken te bestuderen alvorens tot bouwen over te gaan, hoewel het verstandig is, tevoren even door te nemen, wat er over monteren en solderen te lezen is.

De belangrijkste eigenschappen van de

Pionier Senior Super-afstemeenheid S 103 en S 113 zijn:

- Ontvangst van zenders met golflengten tussen 187 en 580 meter (frequentie: $1610-517 \mathrm{kHz}$), dit is het normale zg. middengolfgebied.
- Automatische versterkingsregeling voor het compenseren van grote verschillen tussen de geluidssterkten van de zenders.
- Er is uitsluitend gebruik gemaakt van de modernste onderdelen en materialen, zoals:
ruisarme, opgedampte koolweerstanden
keramische condensatoren
verliesarme, keramische buishouders
combinatiebuizen uit de "noval"-serie
bij de S 103 speciale universeelspoelen met hoge kwaliteitsfactor (Q), door toepassing van ferroxcube-kern en bijzondere wikkelwijze geïmpregneerde voedingstransformator (in het voedingspakket S 20 V).
- De constructie is compact en toch overzichtelijk.
- De afstemeenheden zijn voorzien van een frisse indicatieplaat met duidelijke opdruk.
- De montageplaten zijn van staal, zorgvuldig vercadmiumd en op speciale wijze tegen corrosie behandeld.
- Alle benodigde gaten zijn reeds in de montageplaten aangebracht.
- Er wordt gebruik gemaakt van stalen bevestigingsboutjes en moertjes.

OVER WISSELSPANNING EN RADIOBUIZEN

Zoals in de inleiding reeds werd gezegd, worden de „Pionier Senior"-toestelletjes aangesloten op het elektriciteitsnet. Dat een stopcontact een wisselspanning levert, terwijl een batterij gelijkspanning geeft, is wel bekend, maar wat houdt dat eigenlijk in?
Een elektrische stroom bestaat in feite uit een stroom van elektronen. Dat zijn minuscuul kleine, elektrisch geladen deeltjes, die zich in metalen en andere ,,geleiders" vrij kunnen bewegen. Wanneer tussen twee punten van zo'n geleider een elektrische spanning wordt aangesloten, ontstaat er tussen die twee punten een elektrische stroom, d.w.z. dat de elektronen zich in een bepaalde richting verplaatsen. Wanneer de elektrische spanning een gelijkspanning is, bijv. van een batterij of accu, vindt deze elektronenbeweging in één richting plaats; men spreekt dan van een gelijkstroom. Een wisselspanning (bijv. van het stopcontact) veroorzaakt een elektrische stroom, die periodiek van richting omkeert, dus juist zoals een slinger of een schommel dat doet. Een belangrijk voordeel van een wisselspanning is, dat deze met behulp van een transformator kan worden omgezet (getransformeerd) in een hogere of lagere spanning. Zo kan een beltransformator de 220 volts-spanning van het lichtnet omzetten in de (ongevaarlijke) spanning van 4 à 8 volt, waarop de huisbel werkt. Soortgelijke eenvoudige hulpmiddelen voor het transformeren van een gelijkspanning zijn niet bekend.
Radiobuizen hebben in het algemeen hoge gelijkspanningen nodig om te kunnen werken. Het is vanzelfsprekend mogelijk, hiervoor grote batterijen te gebruiken, maar deze zijn vrij kostbaar. Gemakkelijker is het de wisselspanning van het elektriciteitsnet tot de gewenste waarde te transformeren en er dan met

Alb. I. Schematische voorstelling van een gelijkrichter met een aanduiding van de verschillende elektrische stromen.
behulp van een gelijkrichter gelijkspanning van te maken. De werking van zo'n gelijkrichter kan in het kort worden verklaard aan de hand van afb. 1. Op de transformator is een diode aangesloten, dat is een onderdeel, dat de elektrische stroom maar in één richting doorlaat. De heen en weer gaande wisselstroom wordt hiermee dus veranderd in een weliswaar onregelmatige, maar toch in één richting gaande stroom, in principe dus al een gelijkstroom. Door deze (of beter gezegd: de ermee overeenkomende gelijkspanning) toe te voeren aan een elektrolytische condensator (deze is te beschouwen als een ,,reservoir" voor elektriciteit), wordt een meer regelmatige stroom (spanning) verkregen.

Voorzichtig met elektriciteit!

Alvorens nu de radiobuizen aan een nader onderzoek te onderwerpen, is het goed nog even bij deze verschillende elektrische spanningen stil te blijven staan. Het is wel bekend dat een hoge spanning, bij voorbeeld de spanning van het stopcontact, gevaarlijk is bij aanraking met het menselijk lichaam. Vooral wanneer de spanningsbron in staat is, een redelijk sterke stroom te leveren (en dat is bijv. bij het lichtnet beslist het geval), kan een elektrische schok zelfs levensgevaarlijk zijn. Een ieder, die met elektriciteit te maken heeft, moet zich hiervan terdege bewust zijn. In een radiotoestel wordt de spanning van het stopcontact op een nog hogere waarde gebracht, dus hier is grote voorzichtigheid wel een primaire eis. Experimenteer niet met een toestel, wanneer dit op het stopcontact is aangesloten; haal steeds eerst de netsteker er uit. Is het om de een of andere reden toch noodzakelijk aan een onder spanning staand toestel te werken (bijv. tijdens het afregelen), maak dan gebruik van goed geisoleerde gereedschappen en gebruik zo mogelijk maar één hand; de stroom kan dan hoogstens door een paar vingers of door een arm gaan, wat altijd nog minder ernstig is dan wanneer de elektriciteit via het hart en de longen van de ene arm naar de andere stroomt.
Ook de elektrolytische condensatoren in de gelijkrichter zijn onderdelen, waarmee voorzichtig moet worden omgegaan. Deze „reservoirs" kunnen namelijk enige tijd nadat het toestel is uitgeschakeld, nog een aanzienlijke hoeveelheid elektrische energie bevatten. Het verdient daarom aanbeveling, na het uitschakelen nog even te wachten, alvorens te gaan experimenteren. Eventueel kan een elektrolytische condensator worden geleegd door de elektriciteit via een weerstand van bijv. 2200 of 4700 ohm weg te laten stromen (weerstand enkele seconden aanbrengen tussen de plus-aansluiting van de condensator en het chassis). Zorg ervoor daarbij de aansluitdraden van de weerstand niet met de handen aan te raken.
Tenslotte moet nog worden gewezen op de noodzaak, het toestelletje onder te brengen in een kastje, zodat het (óók voor de huisgenoten) niet mogelijk is per ongeluk in aanraking te komen met spanningvoerende onderdelen. Voor
de „Pionier Senior" toestelletjes is een speciaal kastje in de handel. Het is ook mogelijk (bijv. van triplex) zelf een kastje te maken.

Radiobuizen

De werking van radiobuizen berust op de elektrische lading van de elektronen; deze lading wordt negatief genoemd. Een positieve en een negatieve lading trekken elkaar aan, juist zoals magnetische noord- en zuidpolen elkaar aantrekken. Evenzo stoten gelijknamige ladingen elkaar af.

Een radiobuis is in de eenvoudigste vorm opgebouwd uit twee elementen of elektroden, de zg. anode en de katode, die zijn ondergebracht in een glazen ballon, waaruit alle lucht is weggezogen. De elektroden zijn verbonden met pennen in de buisvoet, waarop de vereiste elektrische spanningen kunnen worden aangesloten. Door elektrische verhitting wordt de katode roodgloeiend gemaakt, waardoor vrije elektronen het metaal verlaten en een wolkje rond de katode vormen (afb. 2). Wordt nu tussen anode en katode een elektrische spanning aangesloten, zodanig, dat de anode een positieve elektrische lading krijgt ten opzichte van de katode, dan worden de elektronen door de anode aangetrokken; door de buis ontstaat een elektronenstroom (afb 3).

Afb. 2. Schematische voorstelling van een diode.

Afb. 3. Tussen anode en katode wordt een elektrische spanning aangesloten. De anode is elektrisch positief ten opzichte van de katode; er ontstaat een elektronenstroom.

Wanneer de elektrische spanning echter andersom is aangesloten, zodat de anode elektrisch negatief is ten opzichte van de katode, dan worden de elektronen door de anode niet meer aangetrokken, maar juist afgestoten: er
gaat geen elektrische stroom meer door de buis (afb. 4). De radiobuis met twee elektroden (een diode) kan dus worden gebruikt voor het gelijkrichten van een wisselspanning. De elektrische stroom wordt immers maar in één richting doorgelaten.

In een radiotoestel en in een versterker worden radiobuizen gebruikt, die zijn voorzien van zg. roosters. In feite zijn dit spiraalvormig rond de katode aangebrachte draden, die met een of meer pennen in de buisvoet zijn verbonden. In afb. 5 is schematisch een buis met één rooster (een triode) weergegeven. Wanneer op het rooster een negatieve elektrische spanning wordt aangesloten, zullen hierdoor de (negatief geladen) elektronen enigszins worden afgestoten.

Het gevolg is, dat het aantal elektronen dat de anode bereikt, wordt beperkt, en wel sterker naarmate de negatieve roosterspanning groter is. Dit betekent dus tevens een beperking van de zg. anodestroom, tussen anode en spanningsbron.
Het is nu duidelijk, dat een variërende elektrische spanning (een ,elektrische trilling") op het rooster (men spreekt wel van het stuurrooster) een overeenkomende variatie van de anodestroom ten gevolge heeft. Deze laatste blijkt vele malen sterker te zijn dan de elektrische trilling op het rooster: de triode is dus een versterkbuis.

Voor vele toepassingen worden radiobuizen gebruikt met meer dan één rooster, waardoor de anodestroom op verschillende manieren kan worden beïnvloed. Een buis met twee roosters heet een tetrode, met drie roosters een pentode, met vier roosters een hexode en bij vijf roosters spreekt men van een heptode. Soms zijn twee of meer elektroden-systemen in één ballon ondergebracht. Zo bestaat het buistype ECH 81 uit een triode en een heptode.

Een aantal belangrijke opmerkingen, die het bouwen zullen vergemakkelijken

Gereedschap

Voor het bouwen van de Pionier Seniortoestellen zijn nodig een stevige schroevedraaier, die geschikt is voor boutjes M3, een niet te grote tang of een dopsleutel om de moeren vast te houden tijdens het aandraaien van de boutjes, een kniptang, waarmee het montagedraad kan worden bewerkt en vanzelfsprekend een elektrische soldeerbout met spitse soldeerstift, bij voorbeeld het Philips type $969 / 30$ W, dat voor weinig geld bij de radiohandelaar verkrijgbaar is. Al het montagemateriaal, zoals boutjes en moertjes, veerringetjes, montagedraad en soldeertin, is in de Pionier Senior-bouwdozen aanwezig.

Codering en aanduiding van onderdelen

Elk onderdeel heeft een codenummer waaruit door ingewijden onmiddellijk alle gegevens van dat onderdeel kunnen worden afgeleid, bijv. welk type onderdeel het is, welke waarde of grootte het heeft enz. Deze codenummers zijn in onderdelenlijsten achterin dit boekje opgenomen. Eenvoudigheidshalve is in deze handleiding gebruik gemaakt van verkorte aanduidingen.
In de meeste bouwdozen worden onder meer boutjes toegepast met een diameter van 3 mm en met, ,metrisch" schroefdraad.
Verder is van zo'n boutje de lengte van belang. Deze gegevens zijn verwerkt in bijv. de aanduiding M 3×10; dit is dus een boutje met metrisch schroefdraad, een diameter van 3 mm en een lengte van

10 mm (tussen kop en punt). In de moeren voor deze boutjes is vanzelfsprekend dezelfde soort schroefdraad gebruikt, dus evencens "metrisch". Voor een moer, die past op een boutje M3, wordt ook de aanduiding M3 gebruikt.

De (elektrische) waarden van condensatoren en weerstanden worden uitgedrukt in resp. de eenheden farad (afkorting F) en ohm (afkorting: $\Omega=$ Griekse letter omega), juist zoals een lengte in de eenheid meter kan worden uitgedrukt. Omdat deze eenheden in de praktijk soms te groot of te klein blijken, combineert men ze veelal met aanduidingen, die een vermenigvuldigingsgetal betekenen, zoals: mega (afkorting M) voor $1.000 .000 \times$, kilo (afkorting: K) voor $1000 \times$, milli (afkorting: m) voor $\frac{1}{1000} \quad X$, micro (afkorting: $\mu=$ Griekse letter mu) voor 1
$1.000 .000 \times$ en pico (afkorting: p) voor
1
$1.000 .000 .000 .000 \times$. Vergelijk bij voor-
beeld met kilometer $=1000$ meter en
millimeter $=\frac{1}{1000}$ meter.
Op onderdelen of in tekeningen worden de eenheden Ω (ohm) en pF (pico-farad) daarbij vaak weggelaten of vervangen door de letter E , zodat volstaan wordt met de letters M, K, E, m en μ. Indien deze letters tussen de cijfers zijn geplaatst, vervullen ze bovendien de functie van komma.

Enkele voorbeelden zullen dit verduidelijken:

Condensatoren

$$
\begin{aligned}
& 22 \mathrm{E}=22 \mathrm{pF} \text { (pico-farad) } \\
& 220=220 \mathrm{pF} \\
& 2 \mathrm{~K} 2=2,2 \mathrm{KpF} \text { (kilo-pico-farad) } \\
& 22 \mathrm{~K}=2200 \mathrm{pF} \\
& 8 \mu \mathrm{KpF}=8 \mathrm{~K}^{22.000 \mathrm{pF}} \\
& \text { (micro-farad) }
\end{aligned}
$$

Weerstanden

$$
\begin{array}{ll}
18 \mathrm{E} & =18 \Omega(\text { ohm }) \\
180 & =180 \Omega \\
1 \mathrm{~K} 8 & =1,8 \mathrm{~K} \Omega \text { (kilo-ohm) }=1800 \Omega \\
18 \mathrm{~K} & =18 \mathrm{~K} \Omega=18.000 \Omega \\
1 \mathrm{M} 8 & =1,8 \mathrm{M} \Omega \text { (mega-ohm }) \\
& =1.800 .000 \Omega \\
18 \mathrm{M} & =18 \mathrm{M} \Omega=18.000 .000 \Omega
\end{array}
$$

Wanneer op een condensator of weerstand andere letters dan de hier genoemde zijn aangebracht, hebben ze geen betekenis voor de aanduiding van de waarde.
Het vermogen waarmee een weerstand belast mag worden, kan bij deze bouwdozen worden afgeleid uit de afmetingen: een weerstand van $13 \times 4 \mathrm{~mm}$ kan $1 / 4$ watt verdragen;
een weerstand van $20 \times 5 \mathrm{~mm}: 1 / 2$ watt; een weerstand van $30 \times 7 \mathrm{~mm}$: 1 watt. In de bouwbeschrijvingen is zo nodig aangegeven, welk type weerstand moet worden gebruikt.

Kleurcodering

De waarde van een weerstand of condensator wordt, behalve door een opdruk met cijfers en letters, ook vaak op de onderdelen aangegeven door een kleurcodering. Op de weerstand of condensator is dan een aantal kleurringen of -strepen aangebracht, die elk een bepaald getal voorstellen.
De kleurcodering van de betrokken weerstanden en condensatoren is bij elke bouwtekening voor elke betrokken weerstand of condensator gegeven.
Voor wie graag precies de betekenis van de verschillende kleuren weet, is in de

KLEURCODERING WEERSTANDEN EN CONDENSATOREN

Kleur	Waarde in ohm of pico-farad		
	1e ring (le ciifer)	2e ring (2e cijfer)	3e ring (aantal nullen)
zwart	-	0	-
bruin	1	1	0
rood	2	2	00
oranje	3	3	000
geel	4	4	0.000
groen	5	6	00.000
blauw	6	7	000.000
violet	7	8	0.000 .000
grijs	9		00.000 .000
wit	8	000.000 .000	

8
op blz. 8 afgedrukte tabel van het toegepaste systeem een overzicht gegeven. Het is echter niet noodzakelijk dit systeem te kennen, alvorens met monteren te beginnen; de tekeningen spreken voor zichzelf. Bij een weerstand is de eerste ring die, welke het dichtst bij een der uiteinden van de weerstand is gelegen; bij condensatoren met kleurcodering is de eerste ring die, welke aan de ,,top" is aangebracht, dus aan de zijde die het verst van de aansluitdraden is verwijderd. De waarde van de weerstanden wordt gegeven in ohm (Ω), die van de condensatoren in pico-farad (pF).
Kleurcodering wordt ook toegepast bij de isolatie van montagedraad, waarbij de kleur betrekking heeft op de soort leiding, d.w.z. het doel waarvoor de leiding gebruikt wordt. Hierdoor is de montage overzichtelijk en is het gemakkelijk, bepaalde verbindingen te volgen.
In de bouwtekeningen is bij elke leiding een kleur aangegeven. Hierbij is de volgende kleurcode toegepast: aardleidingen: zwart;
gloeidraadleidingen: bruin;
leidingen voor ,plus" voedingsspanning: rood;
katodeleidingen: geel;
stuurroosterleidingen: groen;
anodeleidingen: blauw;
wisselspanningsleidingen: grijs.

Monteren

Bij het bouwen van radiotoestellen, versterkers en andere, ,elektronische" apparaten is het van groot belang, dat van het begin af aan met grote zorgvuldigheid wordt gewerkt. Een loszittend boutje of een slordig gesoldeerde verbinding geeft meestal aanleiding tot hinderlijke storingen, waarvan de oorzaak vaak moeilijk is op te zoeken. Lees de hierna volgende aanwijzingen met aandacht; er kunnen ideeën in verwerkt zijn, die goed van pas zullen komen.
Draai alle boutjes, zonder deze te forceren of te beschadigen, stevig aan, zodat de tandringen onder de moeren zich onder druk vastzetten in het materiaal, waardoor de bevestigde onderdelen niet zullen losraken.
Na enige oefening is het mogelijk om met een kniptang of met een (vooral oude!)
schaar de plastic isolatie aan het uiteinde van een montagedraad te verwijderen, zonder de metalen kern te beschadigen. De isolatie kan ook gemakkelijk worden verwijderd, door deze tevoren door middel van de soldeerbout warm te maken. Gebruik voor het '.rwarmen de zijkant van de soldeersti'. Deze methode mag echter niet worde gevolgd bij de buitenste isolatie van het afgeschermde snoer, omdat daarbij de isolatie van het binnensnoer zou kunnen smelten, waardoor kortsluiting zou kunnen ontstaan.

Afb. 6. Verschillende typen condensatoren.
pin up-condensator

Bij het monteren van condensatoren is het vaak van belang, dat de beide aansluitdraden niet worden verwisseld. Bij de ,,buiscondensatoren" is één draad aan het uiteinde van het buisje en de andere meer naar het midden bevestigd, terwijl ook bij ,,pin up"-condensatoren de beide aansluitdraden op verschillende wijze aan de condensator zijn bevestigd. Let er steeds op, deze aansluitdraden niet te verwisselen (hoewel de condensator bij verkeerde montage niet beschadigd zal worden). Monteer zoals in de bouwtekening is aangegeven.

Elektrolytische condensatoren mogen beslist niet, andersom" worden gemonteerd. Bij verkeerde montage kunnen zij bij het inschakelen van het toestel onherstelbaar worden beschadigd. De juiste stand van een elektrolytische condensator is vooral af te leiden uit de ril, die aan één zijde in het huis is aangebracht. In de tekeningen is deze ril steeds duidelijk aangegeven.

De volgorde van de elektrische montage is zo opgezet, dat zoveel mogelijk alle draden die in één soldeerlip samenkomen, tegelijk kunnen worden gesoldeerd. Daatom worden eerst zoveel mogelijk van deze draden los in de soldeerlip gestoken. Wanneer elke draad direct na het aanbrengen zou worden gesoldeerd, zou het niet alleen zeer moeilijk zijn om in dezelfde soldeerlip nog een volgende draad te brengen, maar dan zou er tenslotte ook tè veel soldeer op de verbinding worden aangebracht, hetgeen tot allerlei moeilijkheden aanleiding zou kunnen geven. Wanneer een verbinding nog niet mag worden gesoldeerd, is in de bouwtekeningen een (open) cirkeltje getekend; verbindingen, die wel gesoldeerd mogen worden, zijn in de tekeningen zwart gemaakt. In de bouwbeschrijving is ook steeds aangegeven, wat wel en wat ($n o g$) niet mag worden gesoldeerd.
Tenslotte nog een vijftal wenken, warmee van het zelf bouwen niet alleen een prettige, maar vooral ook een succesvolle bezigheid zal worden gemaakt.

1. Bestudeer tevoren alle tekeningen en foto's en verkrijg op deze wijze een goede indruk hoe het worden moet.
2. Lees elk genummerd gedeelte van de bouwbeschrijving steeds volledig door, alvorens tot handelen over te gaan. Het is mogelijk dat in de laatste regel iets staat, waar reeds direct rekening mee moet worden gehouden.
3. Zorg ervoor, de kunst van het solderen goed te beheersen. Bedenk, dat elke soldeerverbinding aan hoge eisen moet voldoen!
4. Monteer alle leidingen en onderdelen precies volgens de bouwaanwijzingen.
5. Werk accuraat en vermijd overhaasting. Succes is dan verzekerd.

Solderen

Solderen is voor beginners de moeilijkste montagetechniek, misschien wel vooral zo moeilijk omdat het zo gemakkelijk lijkt. Voor wie nog nooit met een soldeerbout heeft gewerkt, is het zaak éérst door serieuze oefening enige ervaring te verkriigen. Eén slecht soldeercontact kan de oorzaak zijn van vele moeilijkheden.
Er is een tijd geweest, dat soldeerbouten bestonden uit zware koperen blokken aan stelen met houten handvatten, die boven het vuur verhit moesten worden, waarna met soldeervet uit een potje en dikke staven soldeermetaal de gewenste verbinding moest worden gemaakt. Voor de radiotechniek is deze tijd definitief voorbij, sinds de afmetingen van de verschillende onderdelen aanzienlijk kleinere verhittingselementen noodzakelijk maakten. Gebruik een niet te grote elektrische soldeerbout (van bijv. 30 watt) met een spitse soldeerstift en uitsluitend harskernsoldeer, zoals dat in de Pionier Seniorbouwdozen aanwezig is. Dit harskernsoldeer bestaat uit een draad metaal van een speciale samenstelling, waarin een kern van voornamelijk hars is aangebracht. Bij verhitting smelt eerst het hars, dat over het te solderen metaal vloeit, en vervolgens het soldeer, dat zich dank zij het hars aan het metaal hecht. Dit betekent, dat het harskernsoldeer bij het solderen zó moet worden gehouden, dat het hars gelegenheid heeft over het metaal te vloeien, dus tegen het metaal en niet daarboven.
De foto's afb. 7 en 8 geven aan, hoe te werk moet worden gegaan. De leiding of aansluitdraad wordt in de soldeerlip gestoken, waarna tegelijkertijd het harskernsoldeer en het vlakke uiteinde van de soldeerstift er tegen worden gehouden. Na ongeveer drie seconden zal de juiste hoeveelheid soldeer gesmolten zijn. Verwijder het harskernsoldeer en houd de soldeerstift op zijn plaats tot het soldeer zich over de gehele te solderen verbinding heeft verspreid. Neem dan onmiddellijk de soldeerstift weg en zorg ervoor, dat er gedurende tenminste vijf seconden verder niets kan bewegen. Het stollen van het soldeer is te zien aan het plotseling dof worden van het soldeeroppervlak. Enkele seconden na dit moment is de verbinding genoeg afgekoeld en kan het monteren
worden voortgezet. Mocht de draad vóór of vooral tijdens het stollen toch zijn bewogen, neem dan het zekere voor het onzekere en verhit de verbinding opnieuw. Besteed bij het solderen ook aandacht aan de volgende wenken.

1. Let er op, dat de soldeerbout goed op temperatuur is gekomen. Een beetje soldeer, dat op de punt van de soldeerstift wordt gebracht, moet onmiddellijk smelten.
2. Zorg steeds voor een schone soldeerstift. Verwijder vuil en/of overtollig soldeer door vlug afvegen met een doek. Maak van tijd tot tijd de soldeerstift met een vijl en schuurpapier helemaal schoon.
3. Buig een draad, die in een soldeerlip is gestoken, niet zover om, dat het moeilijk is hem er later weer uit te trekken bijv. bij ombouwen van de afstemeenheid.
4. Houd de soldeerstift niet langer op de verbinding dan nodig is, anders verbrandt het soldeer of worden onderdelen oververhit. In afb. 9 is daarvan een aantal voorbeelden gegeven.
5. Wees niet te zuinig met soldeer, maar beslist ook niet te royaal.
6. Bestudeer de verschillende voorbeelden van goede en foutieve verbindingen in afb. 9 aandachtig en zorg voor de nodige vaardigheid om de fouten die daar gemaakt zijn, zelf nooit te maken.

Afb. 7. We gaan solderen. De montagedratad is in de soldeerlip gestoken en het harskernsoldeer wordt er tegelijk met de hete stijt van de soldeerbout bij gebracht.

Alb. 8. Er is een voldoende hoeveelheid hars en soldeertin op de verbinding gesmolten. Nu wordt het soldeer weggenomen en de verbinding wordt met de soldeerbout doorverwarmd, tot het soldeer zich over de gehele oppervlakte ervan heeft verspreid.

Afb. 9. Een aantal voorbeelden van goed en foutief solderen.

1. Te heet gesoldeerd (te lang met de bout doorverwarmd); het soldeer is ,verbrand". 2-3. Goed (2 is aan de achterzijde gesoldeerd).
2. Goed gesoldeerd, maar de isolatie van de leiding is onnodig ver weggehaald.
3. De montagedraad is tïdens het afkoelen bewogen, waardoor de verbinding onbetrouwbaar is.
4. De aansluitdraad van de weerstand is te ver ingekort. De verbinding is te heet gesoldeerd en de weerstand is oververhit.
7-8. Goed.
5. Er is niet voldoende hars over de verbinding gevloeid; het soldeer is "weggelopen" en de draad maakt geen goed contact.
6. Er is te veel soldeer op de verbinding gebracht. Bovendien is het uiteinde van de leiding te ver rondgebogen, waardoor moeilijkheden kunnen worden verwacht wanneer de draad weer moet worden losgenomen.
7. De leiding is in sterk gebogen toestand vrij heet gesoldeerd, waardoor de isolatie gedeeltelïk is weggesmolten.
12-13-14-15. Goed (de leiding vanaf lip 1 van de draadsteun is aan de achterzijde van de centrale bus 14 gesoldeerd).
8. De soldeerbout is te vlug weggenomen; het soldeer is niet goed doorgevloeid en de draden zitten niet vast.

HET SCHEMA VAN DE SUPER-AFSTEMEENHEID PIONIER S 103

Uit de aanduiding ,"super-afstemeenheid" voor de Pionier S 103 kan al worden afgeleid, dat er een belangrijk verschil bestaat tussen deze afstemeenheid en de „Pionier Seniors" S 101 en S 102. Dit is inderdaad het geval. Terwijl er bij de opbouw van de éénkrings-afstemeenheid Pionier S 101 tot de tweekringsafstemeenheid Pionier S 102 geen principieel belangrijke wijzigingen werden aangebracht wordt er bij de ombouw tot de super-afstemeenheid Pionier S 103 op een geheel ander beginsel overgegaan. Vrijwel alle weerstanden en condensatoren zullen dan ook moeten worden vervangen, terwijl verschillende nieuwe onderdelen worden toegevoegd. Wanneer wordt gelet op de prestaties van de S 103: de grote gevoeligheid en goede selectiviteit en dientengevolge het grote aantal zenders dat kan worden ontvangen, is het ombouwen ongetwijfeld de moeite waard.
In de hierna volgende schemabeschrijving zal het verschil tussen de afstemeenheden nader worden toegelicht. Overigens kan nog worden opgemerkt, dat het niet nodig is iets van de grondbeginselen van het toestel af te weten om de afstemeenheid te bouwen. Aan de hand van de overzichtelijke tekeningen en de duidelijke handleiding kunnen ook zij, die nooit eerder „aan radio deden" deze hobby met succes beoefenen.
Een afstemkring van een radio-ontvangtoestel kan nooit zo selectief zijn, dat uitsluitend het zendersignaal waarop met de afstemcondensator is afgestemd doorkomt. Altijd zullen zendersignalen met frequenties die maar weinig verschillen van de frequentie van het uitgekozen zendersignaal eveneens de afstemkring passeren, zij het dan ook sterk verzwakt. Een radiotoestel met twee afstemkringen, zoals de Pionier S 102, zal dan ook al selectiever zijn (de zenders beter van elkaar scheiden) dan een toestel met één afstemkring, zoals de Pionier S 101. Teneinde een nog betere selectiviteit te krijgen zou toepassing van mér dan twee afstemkringen voor de hand liggen, maar hieraan zijn nadelen verbonden. Een van de belangrijkste is wel dat een afstemeenheid met verscheidene afstemkringen, die dus elk op de verschillende zenders afgestemd moeten kunnen worden, zeer moeilijk stabiel is te maken. In de moderne radiotoestellen wordt dan ook een „,kunstgreep" toegepast om zonder deze moeilijkheden toch een zeer goede selectiviteit te bereiken. Het kenmerk van deze
schakelingen is dat elk zendersignaal (ongeacht de frequentie) wordt omgezet in een signaal met één vaste frequentie, de z.g. middenfrequentie (afgekort m.f.). Het m.f.-signaal, dat op deze wijze wordt verkregen, bevat dezelfde modulatie (,elektrische geluidstrilling") als het zendersignaal waarop is afgestemd en kan dank zij z'n vaste frequentie worden versterkt met een versterker, waarin uitsluitend afstemkringen voorkomen die op die (midden-) frequentie zijn ingesteld. Op deze wijze kan een ontvangtoestel worden gemaakt dat zeer gevoelig en selectief is.
Op welke wijze het middenfrequentiesignaal wordt verkregen, kan duidelijk worden gemaakt met afb. 10, waarin een „blokschema" van een super-afstem-

eenheid is gegeven. Ieder blokje bestaat in werkelijkheid uit een schakeling met verscheidene onderdelen. De zendersignalen, die door de antenne worden opgevangen, worden toegevoerd aan de antennekring: een afgestemde kring met een spoel en een afstemcondensator. Het zendersignaal, dat door de antennekring is uitgekozen, wordt toegevoerd aan het tweede „blokje": de mengschakeling. Hierin is een radiobuis opgenomen, die behalve het zojuist genoemde zendersignaal nog een tweede elektrische trilling krijgt toegevoerd, nl. van de oscillator. Deze oscillator is in principe een klein zendertje, dat een „oscillatorsignaal" afgeeft waarvan de frequentie nauwkeurig kan worden ingesteld. In de mengschakeling ontstaan tengevolge van deze twee toegevoerde signalen twee nieuwe elektrische trillingen, waarvan de ene een frequentie heeft die gelijk is aan de som van de toegevoerde frequenties, terwijl de andere een frequentie heeft gelijk aan het verschil van beide frequenties. Om deze laatste is het begonnen. In de afstemeenheid wordt de frequentie van het oscillatorsignaal namelijk automatisch bij het verdraaien van de afstemknop steeds zó ingesteld, dat het verschil tussen de frequenties van het (door de afstemkring uitgekozen) zendersignaal en het oscillatorsignaal constant is. Op deze wijze ontstaat het „middenfrequentiesignaal", dat een constante frequentie heeft en dat bij de bewerking in de mengschakeling automatisch de modulatie van het zendersignaal heeft overgenomen. Het m.f.-signaal wordt versterkt met een op de middenfrequentie afgestemde versterker. De eigenschappen van deze versterker bepalen in hoofdzaak de gevoeligheid en selectiviteit van de gehele schakeling; de antennekring zorgt dus alleen nog maar voor een zekere vóórselectie. Het versterkte m.f.-signaal wordt toegevoerd aan de demodulator,
waarin de modulatie (de ,elektrische geluidstrilling") te voorschijn wordt gebracht. Een ontvangtoestel, dat volgens deze grondbeginselen is opgebouwd, wordt superheterodyne genoemd, meestal afgekort tot ,super".

De antennekring

De antennekring van de Pionier S 103 wordt gevormd door wikkeling S_{8} van een spoel PP 11, één van de beide afstemcondensatoren (C_{16}) en de instelcondensator C_{15}. (Deze laatste kan zo worden afgeregeld, dat met de afstemcondensator het gewenste frequentiegebied wordt bestreken.) De afstemcondensator kan zo worden ingesteld, dat de antennekring voor de draaggolf van een bepaalde zender voorkeur heeft.
De antenne is gekoppeld aan een condensator, die tussen de spoel en ,,aarde" is aangebracht. De weerstand R_{10}, waarmee deze condensator is overbrugd, speelt een ondergeschikte rol en dient alleen om ongewenste bijverschijnselen te voorkomen. Deze methode om de antenne aan te sluiten (voetkoppeling genoemd) heeft het voordeel dat de grootte van de antenne weinig invloed heeft op de ingangskring. Het is hierbij echter wel gewenst een niet te kleine antenne te gebruiken. Wanneer een kleine antenne wordt aangesloten is het beter de tweede mogelijkheid voor de koppeling toe te passen, die in het schema gestippeld is aangegeven, nl. via wikkeling S_{7}. Tussen aansluiting 1 van deze wikkeling en de antenne dient dan de condensator te worden opgenomen, waarvan de grootte enigszins wordt bepaald door de grootte van de antenne (zie hiervoor onder „Enkele praktische wenken"). Het door de afstemkring gekozen zendersignaal wordt via de condensator C_{14} toegevoerd aan het stuurrooster van het heptode-gedeelte van de combinatiebuis ECH 81.

De mengschakeling en de oscillator

In de mengschakeling wordt bij de S 103 het heptode-gedeelte van de combinatiebuis ECH 81 gebruikt. De oscillator wordt gevormd door het triodegedeelte van deze combinatiebuis, de twee inductief gekoppelde wikkelingen van de tweede spoel PP 11 en het tweede gedeelte (C_{9}) van de dubbele afstemcondensator met de bijbehorende weerstanden en condensatoren. Het oscillatorsignaal wordt aan het derde rooster van de „mengbuis" (de heptode) toegevoerd vanaf het stuurrooster van de triode.
Zoals in het voorafgaande is toegelicht, moet de frequentie van het oscillatorsignaal bij elke stand van de dubbele afstemcondensator zodanig zijn, dat het verschil tussen de frequentie van het aan het stuurrooster van de mengbuis toegevoerde zendersignaal en de frequentie van het oscillatorsignaal constant is (gelijk aan de middenfrequentie). Om dit te bereiken is van wikkeling S_{6} van de tweede spoel PP 11 (de oscillatorspoel) slechts het gedeelte 6-5 gebruikt en zijn extra condensatoren toegepast $\left(\mathrm{C}_{10}, \mathrm{C}_{8}\right.$ en $\left.\mathrm{C}_{7}\right)$. De frequentie van het

oscillatorsignaal wordt ingesteld met C_{9} (de tweede afstemcondensator), die dus met de afstemcondensator C_{16} van de antennekring op één as is gemonteerd. De oscillatorkring (gevormd door $\mathrm{S}_{6}-\mathrm{C}_{10}-\mathrm{C}_{9}-\mathrm{C}_{8}-\mathrm{C}_{7}$) is verbonden met de anode van de (oscillator)triode via de condensator C_{11}; de tweede wikkeling $\left(S_{5}\right)$ van de oscillatorspoel PP 11 is met het stuurrooster van de triode verbonden via de condensator C_{12}. (Deze beide condensatoren C_{11} en C_{12} zorgen er voor, dat de spoel PP 11 geen invloed heeft op de gelijkspanningen van de triode.) De anodespanning van de triode wordt toegevoerd via de weerstand R_{6}; de verbinding tussen het stuurrooster en ,aarde" (de montageplaat) wordt gevormd door de weerstand R_{7}.
Het in het heptode-gedeelte van de ECH 81 verkregen middenfrequentiesignaal is aanwezig in de anodestroom van deze mengbuis en wordt toegevoerd aan wikkeling S_{3} van het eerste bandfilter (waarover straks meer). Via deze wikkeling wordt ook de anodespanning aan de mengbuis toegevoerd. Het tweede en vierde rooster van de mengbuis krijgen, zoals voor een goede werking van de buis noodzakelijk is, een positieve gelijkspanning toegevoerd via de weerstand R_{8}; de (ontkoppel)condensator C_{13} vormt een kortsluiting voor de wisselspanningen aan deze beide roosters.
De negatieve roosterspanning voor de heptode wordt toegevoerd via de weerstand R_{9}, die weer via de weerstand R_{1} met R_{3} is verbonden. Dit houdt verband met de automatische versterkingsregeling, die nog afzonderlijk zal worden besproken. De gemeenschappelijke katode van de combinatiebuis is rechtstreeks met ,,aarde" verbonden.

De middenfrequentieversterker

Het m.f.-signaal, dat in de anodestroom van de mengbuis aanwezig is, wordt versterkt door de middenfrequentieversterker, waarvan de voornaamste onderdelen zijn: de bandfilters $S_{3}-S_{4}$ en $S_{1}-S_{2}$ en het pentode-gedeelte van de combinatiebuis EBF 89. Elk bandfilter bestaat uit twee inductief gekoppelde kringen, die elk zijn afgestemd op de middenfrequentie. Door deze kringen wordt deze frequentie sterk bevoordeeld ten opzichte van andere frequenties die nog bij de bandfilters voorkomen. Het pentode-gedeelte van de EBF 89 versterkt dan ook vrijwel alleen het middenfrequentiesignaal.
De anodespanning voor de pentode wordt toegevoerd via wikkeling S_{1} van het tweede bandfilter en de weerstand R_{4}. De gelijkspanning voor het tweede rooster wordt toegevoerd via de weerstanden R_{4} en R_{5}. De condensatoren C_{5} en C_{4} zijn zo aangebracht dat de versterkbuis zeer stabiel werkt, terwijl zij tevens een kortsluiting vormen voor de wisselspanningen aan het tweede rooster. De katode van de buis is weer rechtstreeks met ,,aarde" verbonden. Het stuurrooster is via wikkeling S_{4} van het eerste bandfilter verbonden met de leiding, die zorgt voor de automatische versterkingsregeling.

De demodulator

Tenslotte moet de modulatie (de „elektrische geluidstrilling") nog worden afgescheiden van het middenfrequentiesignaal. Dit demoduleren vindt in de super-afstemeenheid plaats door een van de dioden (tussen de aansluitingen 8 en 3) die in de combinatiebuis EBF 89 zijn ondergebracht, in combinatie met de weerstanden R_{2} en R_{3} en de condensatoren C_{2} en C_{3}. Het middenfrequentiesignaal wordt afgenomen van wikkeling S_{2} van het tweede bandfilter. Het filter, bestaande uit C_{3}, R_{2} en C_{2} zorgt er hierbij voor dat de resten van. het middenfrequentiesignaal, die na het gelijkrichten door de diode nog over zijn, naar ,,aarde" worden afgevoerd, zodat over de weerstand R_{3} voornamelijk de combinatie van een gelijkspanning en de elektrische geluidstrilling ontstaat. Deze laatste wordt via de condensator C_{1} toegevoerd aan een versterker, die luidsprekerweergave mogelijk maakt. De gelijkspanning, die tengevolge van het demoduleren eveneens over de weerstand R_{3} ontstaat, wordt gebruikt voor de automatische versterkingsregeling.

Automatische versterkingsregeling

Als gevolg van de verschillen in de sterkten van de zenders en in de afstanden van deze tot de ontvangantenne zijn de zendersignalen, die aan de afstemeenheid worden toegevoerd, eveneens verschillend van sterkte. Wanneer geen speciale maatregelen werden getroffen, zou de geluidssterkte waarmee bepaalde zenders doorkomen dan ook veel groter zijn dan die van andere zenders. De automatische versterkingsregeling (vaak afgekort tot a.v.r.) zorgt ervoor, dat
dit enigszins hinderlijke verschijnsel zoveel mogelijk wordt opgeheven. Het principe van de schakeling is, dat de negatieve roosterspanning van de buizen in de afstemeenheid bij ontvangst van sterke zenders meer negatief wordt gemaakt, waardoor de versterking van die buizen afneemt. Hiervoor is dus een gelijkspanning nodig, die groter wordt naarmate het zendersignaal waarop is afgestemd sterker is. Deze spanning wordt afgenomen van de weerstand R_{3}, die in de demodulatieschakeling is opgenomen. De grootte van de gelijkspanning over deze weerstand is afhankelijk van de sterkte van het middenfrequentiesignaal, dus uiteindelijk van de sterkte van het zendersignaal. Bij ontvangst van een sterk zendersignaal is deze spanning groot (sterk negatief), zodat de beide combinatiebuizen dan via de weerstand $\mathbf{R}_{\mathbf{1}}$ een grote negatieve roosterspanning krijgen. De versterking van de buizen neemt daardoor af, zodat het middenfrequentiesignaal, dat aan de demodulator wordt toegevoerd, zwakker wordt. Bij ontvangst van zwakke zendersignalen is de versterking juist groot.
De condensator C_{6} zorgt ervoor, dat er via de leiding voor de a.v.r. geen ongewenste koppeling tussen de verschillende gedeelten van de afstemeenheid kan ontstaan.

Afb. 11. De gebouwde super-afstemeenheid Pionier S 103 in standaarduitvoering, voor aansluiting op een Pionier Senior-versterker.
dit enigszins hinderlijke verschijnsel zoveel mogelijk wordt opgeheven. Het principe van de schakeling is, dat de negatieve roosterspanning van de buizen in de afstemeenheid bij ontvangst van sterke zenders meer negatief wordt gemaakt, waardoor de versterking van die buizen afneemt. Hiervoor is dus een gelijkspanning nodig, die groter wordt naarmate het zendersignaal waarop is afgestemd sterker is. Deze spanning wordt afgenomen van de weerstand R_{3}, die in de demodulatieschakeling is opgenomen. De grootte van de gelijkspanning over deze weerstand is afhankelijk van de sterkte van het middenfrequentiesignaal, dus uiteindelijk van de sterkte van het zendersignaal. Bij ontvangst van een sterk zendersignaal is deze spanning groot (sterk negatief), zodat de beide combinatiebuizen dan via de weerstand R_{1} een grote negatieve roosterspanning krijgen. De versterking van de buizen neemt daardoor af, zodat het middenfrequentiesignaal, dat aan de demodulator wordt toegevoerd, zwakker wordt. Bij ontvangst van zwakke zendersignalen is de versterking juist groot.
De condensator C_{6} zorgt ervoor, dat er via de leiding voor de a.v.r. geen ongewenste koppeling tussen de verschillende gedeelten van de afstemeenheid kan ontstaan.

Afb. 11. De gebouwde super-afstemeenheid Pionier S 103 in standaarduitvoering, voor aansluiting op een Pionier Senior-versterker.
BOUWBESCHRIJVING PIONIER SENIOR SUPER-AFSTEMEENHEID S 103
De super-afstemeenheid S 103 kan worden gebouwd achtereenvolgens elk soldeerpunt tot het soldeer gaat smelten en trek dan voorzichtig de draden uit de soldeerlippen.
3. Neem, wanneer een versterker is aangebouwd, ook de vier leidingen vanaf de afstemeenheid los van de aansluitpunten in deze versterker.
4. Haal de draadsteun, de variabele condensator die in de voorplaat is aangebracht en de potentiometer met het beugeltje waaraan deze is gemonteerd, uit het toestel.
5. Verwijder de spoel PP 11 die achter de dubbele afstemcondensator op de grote montageplat is gemonteerd en neem ook de buishouder weg.
Ook de stekerbusplaat krijgt straks een andere

 open zijn.
Opm. De indicatieplaat, het aandrijfkoord en de wijzer behoeven niet te worden verwijderd. . . Indien het voedingsgedeelte $S 20 V$ is ingebouwd,
moeten ook de dubbele elektrolytische condensator, de moeten ook de dubbele elektrolytische condensator, de
weerstand, de gelijkrichtcel en de bijbehorende leidingen
 zijn plaats blijven. de onderdelen uit de aanvullingsdoos S 102 A. De hierna volgende bouwbeschrijving is er dus op gebaseerd, dat een afstemeenheid S 102 wordt omgebouwd. De meeste grote onderdelen, die in de S 102 zijn gebruikt, worden ook weer in de afstemeenheid S 103 toegepast. Tussen de schakelingen van deze beide afstemeenheden bestaat echter een veel groter verschil dan tussen die van de éénkrings-afstemeenheid S 101 en de tweekrings-afstemeenheid S 102. Vrijwel alle weerstanden en condensatoren zullen bij de ombourv tot de S 103 dan ook moeten worden vervangen, terwijl
 gewijzigd moet worden.
Het is gemakkelijk, wanneer elk punt van de hierna volgende bouwbeschrijving wordt afgekruist, zodra het is afgewerkt.
Voorbereiding

1. Om beschadiging van de buis ECH 81 van de tweekrings-afstemeenheid S 102 en van de buis (buizen) in de eventueel aangebouwde versterker S 201 of S 202 te voorkomen, verdient het aanbeveling deze eerst te verwijderen. Het is niet nodig, de versterker los te maken.
2. Verwijder alle weerstanden, condenșatoren en
i

$$
\begin{aligned}
& \text { M E C H A N I S C H E M O N T A G E } \\
& \text { Zie tekening I } \\
& \text { 8. Monteer met vier boutjes M } 3 \times 6 \text { (lengte } 6 \mathrm{~mm} \text {), } \\
& \text { een dubbele en een enkele soldeerlip, vier moeren } \\
& \text { en tandringen de twee buishouders op de grote } \\
& \text { montageplaat. Bij één buishouder (rechts in } \\
& \text { tekening I) komt de enkele soldeerlip aan de } \\
& \text { bovenzijde; de dubbele soldeerlip komt bij de } \\
& \text { tweede buishouder aan de onderzijde. } \\
& \text { Let er goed op, dat de buishouders in de juiste } \\
& \text { stand worden aangebracht. In de tekening is } \\
& \text { duidelijk aangegeven, waar de uitsparingen in de } \\
& \text { randen van de buishouders moeten komen. } \\
& \text { 9. Breng de draadsteun aan nabij de rand van de } \\
& \text { grote montageplaat met een boutje M } 3 \times 6 \text { met } \\
& \text { tandring en moer. In een detail bij tekening I is } \\
& \text { de juiste plaats aangegeven, waar de draadsteun } \\
& \text { moet komen. } \\
& \text { 10. Bevestig met behulp van de speciale veren de twee } \\
& \text { bandfilters op de grote montageplaat. Steek eerst } \\
& \text { de veren in de kleine halfronde uitsparingen in } \\
& \text { de randen van de gaten in de montageplaat en } \\
& \text { breng dan de bandfilters aan. In de tekening is } \\
& \text { aangegeven, aan welke zijde de witte merktekens } \\
& \text { die zijn aangebracht op de isolatiestukken aan de } \\
& \text { onderzijde, moeten komen. Zorg er voor, dat de } \\
& \text { bandfilters in de juiste stand in de gaten worden } \\
& \text { gestoken. Druk daarna voorzichtig de veren over }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. Monteer de tweede spoel PP 11, die nu als } \\
& \text { oscillatorspoel dienst gaat doen, op de bekende } \\
& \text { wijze boven het gat links achter in de grote } \\
& \text { montageplaat (rechts vooraan in tekening I). } \\
& \text { Gebruik hiervoor de twee spoelklemmen met } \\
& \text { boutjes M } 3 \times 10 \text {, tandringen en moeren. Zorg } \\
& \text { er voor, dat het gaatje in de bruine montageplaat } \\
& \text { van de spoel komt aan de zijde die in tekening I } \\
& \text { bij het gat met een dikke pijl is aangegeven. Zie } \\
& \text { eventueel ook tekening II. } \\
& \text { 12. Zet aan de onderzijde van de grote montageplaat } \\
& \text { een dubbele soldeerlip vast met een boutje } \mathrm{M} 3 \times 6 \\
& \text { met moer en tandring op het gat tussen de beide } \\
& \text { spoelen PP 11. } \\
& \text { 13. Verwijder even het boutje, waarmee het linker- } \\
& \text { voetje van de afstemcondensator en een dubbele } \\
& \text { soldeerlip aan de onderzijde aan de grote montage- } \\
& \text { plaat zijn vastgezet. Deze soldeerlip en de drie } \\
& \text { grote sluitringen worden niet meer gebruikt. } \\
& \text { 14. Druk vanaf de onderzijde in het vrijgekomen gat } \\
& \text { in de grote montageplaat, juist onder het linker- } \\
& \text { voetje van de afstemcondensator, een rubbertule } \\
& \text { en breng hierin een afstandsbusje aan. } \\
& \text { 15. Steek een boutje M } 3 \times 10 \times \text { door het voetje van } \\
& \text { de afstemcondensator en het busje in de rubber- } \\
& \text { tule, voorzie het aan de onderzijde van een } \\
& \text { (kleine) sluitring en een tandring en zet het } \\
& \text { geheel vast met behulp van een moer. Het voetje } \\
& \text { van de afstemcondensator is dan op dezelfde wijze } \\
& \text { vastgezet als de beide andere. }
\end{aligned}
$$

aansluitdraad van de weerstand R_{9} aan lip 1 van het eerste bandfilter. Steek de andere aansluitdraad van R_{9} voorlopig los in lip 2 van buishouder I .

 R_{4} en een rode draad van 12 cm . Steek de tweede aansluitdraad van R_{4} in lip Q van het tweede bandfilter en het andere uiteinde van de rode draad in lip Q van het eerste bandfilter. Aan beide lippen Q van de bandfilters nog niet solderen. Breng tussen de lippen 1 en 3 van de draadsteun
 de condensator C_{1}. Haal één aansluitdraad van C_{1} ook nog door het bovenste gat van lip 2 van de draadsteun om meer steun te krijgen en breng deze condensator loodrecht op de montageplaat. Aan de achterzijde van het huis van de afstem-
condensator is een soldeerlip bevestigd. Breng een condensator is een soldeerlip bevestigd. Breng een
zwarte draad van 7 cm door het gat in de montagezwarte draad van 7 cm door het gat in de montagedeze draad aan de lip. Steek het andere uiteinde van de leiding voorlopig los in de soldeerlip op de montageplaat (tussen de beide spoelen PP 11).
 lip 9 van buishouder I de condensator C_{12} dicht bij de grote montageplaat. Soldeer aan lip 1; aan lip 9 nog niet solderen.

Soldeer aan lip 9 van buishouder I tegelijk een aansluitdraad van de weerstand R_{7} en een blank
 montageplaat en lip 8 van de buishouder niet raakt. Houd R_{7} zo dicht mogelijk bij de montageplaat en steek de tweede aansluitdraad los in de lip op de montageplaat.
verbind lip 2 van de oscillatorspoel door middel van een stukje zwart montagedraad met de
$\stackrel{\infty}{\sim}$
ㅊ
앙

Indien de afstemeenheid wordt voorzien van een eigen voedingsgedeelte (pakket $S 20 \mathrm{~V}$) is het beter de bruine leidingen van 20 cm voorlopig nog niet
aan te brengen.
 uit de tweekrings-afstemeenheid S 102 werd losgenomen, de isolatie en maak met het blanke draad de verbinding tussen lip 6 van buishouder II en $\operatorname{lip}^{P} P$ van het tweede bandfilter, vervolgens tussen lip 8 van dezelfde buishouder en lip T van het
bandfilter en tenslotte tussen lip 2 van de buishouder en lip T van het eerste bandfilter. Houd deze draden zo kort en recht mogelijk.
19. Monteer ook een kort, recht, blank stukje draad van lip 6 van buishouder I naar de nabijgelegen lip P van het eerste bandfilter.
20. Maak met korte, blanke draden de verbindingen

$$
\begin{aligned}
& \text { 20. Maak met korte, blanke draden de verbindingen } \\
& \text { tussen lip } 7 \text { van buishouder II en de centrale bus } \\
& \text { van deze buishouder, en tussen lip } 3 \text { en de centrale } \\
& \text { bus. Soldeer nog niet aan deze lip } 3 \text {. } \\
& \text { 21. Verbind dan de centrale bus van buishouder II } \\
& \text { via lip } 9 \text { met de nabij deze buishouder op de } \\
& \text { montageplaat bevestigde soldeerlip. Vergeet niet } \\
& \text { lip } 9 \text { te solderen, maar soldeer nog niet aan de lip } \\
& \text { op de montageplaat, omdat hier nog meer draden } \\
& \text { zullen samenkomen. } \\
& \text { 22. Leg dicht bij de montageplaat een blanke leiding } \\
& \text { vanaf de centrale bus van buishouder I via lip } 3 \\
& \text { naar de zich rechts voor deze buishouder be- } \\
& \text { vindende lip op de montageplaat. Ook hier geldt: } \\
& \text { soldeer wel aan de bus en aan lip } 3 \text {, maar nog niet } \\
& \text { aan de lip op de montageplaat. } \\
& \text { 23. Soldeer aan lip } 1 \text { van het tweede bandfilter een } \\
& \text { aansluitdraad van de weerstand } \mathrm{R}_{2} \text { en een aansluit- } \\
& \text { draad van de condensator } \mathrm{C}_{3} \text {. Steek de andere } \\
& \text { aansluitdraad van } \mathrm{R}_{2} \text { voorlopig los in het onderste } \\
& \text { gat van lip } 1 \text { van de draadsteun en de tweede } \\
& \text { aansluitdraad van C in het gat van de soldeerlip } \\
& \text { op de montageplaat. Aan deze beide laatst- } \\
& \text { genoemde lippen dus nog niet solderen. } \\
& \text { 24. Steek ook van de condensator } \mathrm{C}_{2} \text { en de weerstand } \\
& \mathrm{R}_{3} \text { elk een aansluitdraad in het onderste gat van } \\
& \text { lip } 1 \text { van de draadsteun en soldeer dit punt. } \\
& \text { 25. Soldeer de andere aansluitdraden van C en } \mathrm{R}_{3} \text {, } \\
& \text { samen met een zwarte draad van } 25 \text { cm en de twee } \\
& \text { draden die daar reeds aanwezig zijn, aan de } \\
& \text { soldeerlip op de montageplaat nabij buishouder II. } \\
& \text { De zwarte draad van } 25 \text { cm wordt later op de } \\
& \text { versterker aangesloten. } \\
& \text { Indien de afstemeenheid wordt voorzien van een } \\
& \text { eigen voedingsgedeelte (pakket } S \text { a } V \text {) is het beter } \\
& \text { deze lange zwarte draad pas later aan te brengen. }
\end{aligned}
$$

van een stukje zwart montagedraad met de
soldeerlip op de montageplaat. Soldeer aan lip 2; aan de lip op de montageplaat nog niet solderen. Soldeer een blauwe leiding van bijna 5 cm aan de met C_{9} gemerkte lip van de dubbele afstem-

 steek het andere uiteinde los in lip 6 van de spoel. Aan de soldeerlip, die aan de bovenzijde van de afstemeenheid met één van de bevestigingsboutjes van buishouder I is vastgezet, moet nu een instelcondensator (C_{8}) worden gesoldeerd. De montage is uitgebeeld in een detail bij tekening II. Buig de soldeerlip iets naar boven. Steek de middenpen van de condensator dan in het gat van de soldeer-

 Soldeer de ingekorte, tweede aansluitdraad van C_{7} aan één van de lippen aan de zijkant van de instelcondensator.

Soldeer aan de tweede lip aan de ziikant van de instelcondensator een blauwe draad van 5 cm , voer deze draad door het gat juist naast de steek het los in lip 6 van de oscillatorspoel.

Het afgeschermde snoertje, dat bij het demonteren van de tweekrings-afstemeenheid S 102 is verwijderd, kan nu weer worden aangesloten. Soldeer de binnenleiding van dit snoer in het onderste gat van lip 5 van de draadsteun. Houd tijdens het solderen het snoer recht voor het soldeerpunt en wacht met buigen tot de misschien gesmolten
 Soldeer vervolgens de afscherming van het snoer aan lip 4 van de draadsteun.

44. Soldeer de tweede aansluitdraad van C_{10} samen met een aansluitdraad van de condensator C_{17}, een van de weerstand R_{10} en de reeds eerder gebrachte zwarte leiding vanaf de afstemcondenop de montageplaat. Let er bij C_{17} op, de juiste aansluitdraad te nemen.

Aan lip 4 van de antennespoel komen de twee andere aansluitdraden van R_{10} en C_{17} en een blauwe draad van ca. 6 cm . Soldeer dit punt. De andere zijde van de blauwe draad wordt straks te brengen stekerbusplaat.

Soldeer aan lip 6 van de antennespoel twee groene draden van ca. 3 cm en een aansluitdraad van de condensator C_{14}

47. Breng de tweede aansluitdraad van C_{14} in lip 2 van buishouder I, bij de aansluitdraad van R_{9} die hierin reeds is aangebracht, en soldeer dit punt. door het meest nabije gat in de rand van de | $\frac{4}{8}$ |
| :---: |
| 0 | fomendensator.
48. Bevestig met twee boutjes M 3×6 met moeren en tandringen de stekerbusplaat aan de achterplaat. De soldeerlippen aan de bussen van de stekerbusplaat dienen van de grote montageplaat
49. De blauwe draad vanaf lip 4 van de antennespoel is in tekening III voor de duidelijkheid met een om R_{10} en C_{10} heen getekend, maar moet иعe 8и!̣!
 achterplaat bevind.

Tweede gedeelte, zie tekening III

38. Monteer de weerstand R_{5} en de condensator C_{4}
samen aan lip Q van het tweede bandfilter. Breng
R_{5} juist boven de centrale bus van buishouder II
en C_{4} evenwijdig aan de grote montageplaat
Soldeer de andere aansluitdraden van deze onder-
delen aan lip 1 van buishouder II, samen met een
(ingekorte) aansluitdraad van de condensator C_{5}.
Zet deze condensator rechtop en soldeer de tweede
aansluitdraad aan de dubbele soldeerlip op de
montageplaat.
39. Soldeer één aansluitdraad van de condensator C_{11}
aan lip 6 van de oscillatorspoel, samen met de
twee draden die hier reeds aanwezig zijn. Steek
de tweede aansluitdraad van C_{11} in lip 8 van
buishouder I. De condensator komt gedeeltelijk
boven de centrale bus van de buishouder. Denk er
aan, dat er nog voldoende ruimte moet blijven
voor de stekerbusplaat, die hier straks wordt
gemonteerd.
40. De weerstand R_{6} mag niet hoger dan de soldeer-
lippen van de buishouder komen. Soldeer één
aansluitdraad van R_{6} aan lip 8 van de buishouder I
(samen met C_{11}) en steek de tweede aansluitdraad
los in lip Q van het eerste bandfilter.
41. Breng in lip Q van het eerste bandfilter ook nog
één aansluitdraad van de ($1 / 2$ watt-) weerstand R_{8}
aan, samen met een rode draad van 20 cm, die
later op de versterker wordt aangesloten. In lip Q
komen nu dus vier draden samen. Soldeer nu dit
punt en zorg er voor, dat alle draden goed vast
komen.
Indien de afstemeenheid wordt voorzien van een
eigen voedingsgedeelte S 20 V, kan de lange rode
leiding beter later pas aan lip Q worden gesoldeerd.
42. Verbind de tweede bus van de stekerbusplaat door
middel van een kort stukje blank of zwart draad
met de centrale bus van buishouder I.
43. Controleer, of de condensatoren C_{12} en C_{11}, de
weerstand R_{6} en de andere onderdelen in dit
gedeelte van de afstemeenheid geen kortsluiting
kunnen maken met een van de bussen van de
stekerbusplaat.
44. Verwijder even het boutje M 3×6 waarmee links
vóó de afstemcondensator de voorplaat aan de
grote montageplaat is bevestigd en zet dan met
hetzelfde boutje met moer en tandring een
dubbele soldeerlip vast aan de bovenzijde van de
grote montageplaat. In een detail bij tekening III
is de juiste plaats aangegeven.
45. Aan deze soldeerlip moet nu de tweede instel-
condensator (C ${ }_{15}$) worden bevestigd. Buig de lip
aan de zijde, die het verst van de afstem-
condensator is verwijderd, enigszins naar boven
en steek de middenpen van de instelcondensator
in het gat van de soldeerlip. Zorg er voor, dat de
condensator loodrecht op de montageplaat staat
en soldeer dit punt.
46. Soldeer dan het stukje groene draad, dat nabij de
instelcondensator door een gat in de montageplaat
is gevoerd, aan een van de lippen aan de zijkant
van de condensator (zie het detail bij tekening III).
47. Controleer nu rustig en zorgvuldig of alle onder-
delen juist zijn aangebracht en of alle verbindings-
punten goed zijn gesoldeerd.
Vergelijk ook met de foto's.
Als alles precies volgens de handleiding en de
tekeningen is gemonteerd, kan het toestel worden
afgewerkt.
Afb. 12. Overzicht van de bedrading aan de onderzijde van een

$$
\begin{aligned}
& \text { 42. Soldeer de tweede aansluitdraad van } \mathrm{R}_{8} \text { samen } \\
& \text { met een aansluitdraad van de condensator } C_{13} \text { aan } \\
& \text { lip } 1 \text { van buishouder } I \mathrm{R}_{8} \text { komt gedeeltelijk juist } \\
& \text { boven de lippen van de buishouder. Kort de } \\
& \text { tweede aansluitdraad van } \mathrm{C}_{13} \text { in en soldeer deze } \\
& \text { in de dubbele soldeerlip die tussen de beide } \\
& \text { spoelen PP } 11 \text { op de montageplaat is bevestigd. } \\
& \text { In deze zijde van de soldeerlip komen nu vier } \\
& \text { draden samen; zorg er voor dat deze alle vier goed } \\
& \text { vast komen. } \\
& \text { 43. Kort één aansluitdraad van de condensator } C_{10} \\
& \text { (nl. de aansluitdraad, die zich dichter bij de zijkant } \\
& \text { van de condensator bevindt dan de andere) in tot } \\
& \text { ca. } 1,5 \mathrm{~cm} \text { en soldeer deze in lip } 5 \text { van de oscillator- } \\
& \text { spoel. }
\end{aligned}
$$

De rode, zwarte en bruine leidingen die in de
tekeningen II en III zijn aangegeven, moeten nu
worden verbonden met de daarvoor aangeduide
punten in de versterkers S 201 of S 202 . Deze zijn
in de bouwbeschrijving van de versterker S 201
de aangegeven in tekenig 202 in IV.

Denk er aan, dat bij gebruik van de versterker

 van de afstemeenheid is bevestigd, in de ,gevoelige ingangsbus van de versterker. buis. houders van de afstemeenheid (de ECH 81 nabij de spoelen PP 11 in buishouder I; de EBF 89 tussen de twee bandfilters in buishouder II). Breng ook de buis (buizen) van de versterker weer aan. Let er bij de versterker S 202 op de
buizen EZ 80 en ECL 82 niet te verwisselen. Druk

 houder rust.
63. Sluit de luidspreker op de versterker aan en de antenne en eventueel de aardleiding op de afstem-
 zich het dichtst bij de versterker bevindt; de „aarde"-steker komt in de bus daarnaast.

Afwerking

57. Voor de ombouw van de tweekrings-afstemeenheid S 102 tot de super-afstemeenheid S 103 was het niet nodig de indicatieplaat en het aandrijfkoord met de wijzer te verwijderen. Mocht dit toch zijn gebeurd, dan kunnen $z i j$ nu weer worden aangebracht aan de hand van de bouwbeschrijving voor de afstemeenheid S 113, die ook in dit boekje
is opgenomen (zie blz. 58a en 58). is opgenomen (zie blz. 58a en 58)
58. Het linker asgat in de indicatieplaat wordt niet meer gebruikt en kan daarom worden afgesloten
met een plastic sierdopie. Druk dit dopje vanaf de voorzijde in het gat. Eventueel kan het plastic wat soepeler worden gemaakt door het dopje enige tekening IV uit de bouwbeschrijving voor de S 113.
Indien de afstemeenheid op zich zelf staand moet worden gebruikt met ingebouwd voedingsgedeelte
$S 20 \mathrm{~V}$, moet van hier af de montage worden voortgezet aan de hand van de betrokken bouwbeschrijving op blz. 60.
Indien de afstemeenheid
Indien de afstemeenheid wordt gecombineerd met een versterker $S 201$ of $S 202$ kan de montage worden voortgezet volgens de hierna opgenomen aanwijzingen 59 t/m 64.
59. Ook een eventueel aan de afstemeenheid

HET AFREGELEN

Pionier Senior super-afstemeenheden S 103 en S 113

Uit de schemabeschrijvingen van de beide super-afstemeenheden is al duidelijk geworden, dat de toestelletjes op een aantal punten moeten worden ,,afgeregeld", om te bereiken dat de verschillende kringen steeds op de juiste frequenties zijn afgestemd. Dit afregelen gebeurt bij de antenne- en oscillatorkringen door het instellen van de schroefkernen van de antenne- en oscillatorspoel en de daarbij behorende instelcondensatoren.
De middenfrequentie-bandfilters (die, zoals in de schemabeschrijvingen is toegelicht, óók uit afgestemde kringen bestaan) worden alleen met de schroefkernen afgeregeld. Deze bandfilters zijn weliswaar in de fabriek nauwkeurig afgestemd op de ,,middenfrequentie" van $452 \mathrm{kHz}(1 \mathrm{kHz}=1$ kilohertz $=$ 1000 hertz $=1000$ trillingen per seconde), maar door de bedrading van de verschillende onderdelen en buizen die in de toestellen met de bandfilters zijn verbonden, is deze afstemming enigszins verstoord. Om een maximale versterking en daardoor een zo groot mogelijke gevoeligheid te verkrijgen is het noodzakelijk de bandfilters bij te regelen. Het nauwkeurigst kan dit gebeuren met behulp van enkele meetinstrumenten. De meeste amateurs zullen echter niet over deze kostbare instrumenten beschikken. Daarom is hierna ook nog een methode aangegeven om zonder meetinstrumenten een redelijke afregeling te verkrijgen. Met deze methode kan echter niet het resultaat worden verkregen, dat met behulp van meetinstrumenten mogelijk is. Wanneer niet ook niet tijdelijk - over de benodigde meetinstrumenten kan worden beschikt, verdient het dus beslist aanbeveling het afregelen toe te vertrouwen aan een radiohandelaar die wel over deze hulpmiddelen beschikt.
Het afregelen van antenne- en oscillatorkring kan gemakkelijker zonder meetinstrumenten worden uitgevoerd, hoewel ook hierbij de beste resultaten kunnen worden verkregen door gebruik te maken van meetinstrumenten.
De volgende meetinstrumenten zijn nodig.
a. Een hoogfrequentie-oscillator (ook wel meetzender genoemd), die een signaal kan leveren met een frequentie, die kan worden ingesteld tussen ca. 510 en 1650 kHz (dat is het frequentiegebied van de zg. middengolf) en bovendien een signaal met een frequentie van 452 kHz . Alle signalen
moeten "gemoduleerd" kunnen worden met een toon van bijvoorbeeld 400 Hz bij een modulatiediepte van 30%. Een geschikte oscillator is het Philips type GM 2893.
b. Een wisselspanningsmeter, die kan worden gebruikt om de uitgangsspanning van de versterker te meten (over de luidsprekerbussen). De meter moet dus bij voorkeur een hoge inwendige weerstand hebben en een meetgebied van 3 volt.
De Philips buisvoltmeters typen GM 6008 en GM 6009 zijn voor dit doel zeer geschikt.

Bij het afregelen wordt met de oscillator een kunstmatig zendersignaal aan het toestel toegevoerd, terwijl de sterkte van het modulatiesignaal van 400 Hz aan de versterkeruitgang wordt gemeten. Voor het instellen van de bandfilters wordt een signaal van 452 kHz toegevoerd. Indien de schroefkernen van deze bandfilters nu iets worden verdraaid, zal het signaal aan de uitgang van de versterker sterker of zwakker worden, wat te zien is aan het groter of kleiner worden van de wijzeruitslag van de meter. Behalve het m.f.-filter in de afstemeenheid S 113 (in de S 103 is een dergelijk filter niet aanwezig), moeten alle kringen zò worden ingesteld, dat de meter een maximum uitslag geeft. Zowel bij het verder uitdraaien als bij het indraaien van de kernen zal de wijzer van de meter dan dus teruglopen.
Om te voorkomen dat de afstemeenheid wordt overstuurd, of dat de automatische versterkingsregeling (zie de schemabeschrijving van de S 103) de aanwijzing onduidelijk maakt, moet er voor worden gezorgd dat de uitslag vande meter niet boven ca. 0,5 volt komt. Wanneer de meter een hogere spanning aanwijst, moet met een daarvoor bestemde regelaar aan de oscillator de sterkte van het toegevoerde kunstmatige zendersignaal worden verminderd. Het is niet juist, de uitslag van de meter te verminderen door de geluidssterkteregelaar van de versterker terug te draaien.
Degenen, die niet de beschikking hebben over een geschikt meetinstrument maar wel in het bezit zijn van gevoelige oren, zouden de maximale sterkte van de 400 Hz -toon op het gehoor kunnen vaststellen. Ook hierbij dient er voor te worden gezorgd, dat het geluid gemiddeld niet te luid doorkomt, omdat anders de automatische versterkingsregeling de juiste instelling weer onduidelijk maakt. Nauwkeurig is deze methode echter niet.
Hierna is punt voor punt aangegeven hoe de afregeling dient te worden uitgevoerd. Gebruik voor het verdraaien van de instelcondensatoren een speciaal daarvoor in de handel gebracht ,trimsleuteltje" of een vlak geslepen stukje plastic, hout of ander isolatiemateriaal, dat tussen het zeskantige bovengedeelte van de instelcondensator en één van de drie nokjes daarnaast wordt gestoken. De schroefkernen van de spoelen PP 11 in de S 103 en de kern van de antennespoel in de S 113 kunnen op dezelfde wijze worden verdraaid met behulp van de in deze kernen aangebrachte sleufgaten. De kernen van de bandfilters en bij de S 113 van de oscillatorspoel en het m.f.filter zijn verbonden met koperen, van schroefdraad voorziene stiften, waarin eveneens een sleuf is aangebracht. Zorg er bij het verdraaien van deze schroefkernen
voor, geen druk uit te oefenen op het instelgedeelte en gebruik een goed passende schroevedraaier. Let verder vooral op, geen spanningvoerende leidingen of onderdelen aan te raken tijdens het afregelen.
De afregelpunten zijn aangegeven in een tweetal tekeningen (afb. 14 en 15), dat is afgedrukt op blz. 33a. Deze bladzijde kan naar buiten worden geslagen.

Afregelen met behulp van meetinstrumenten

65. Stel de wisselspanningsmeter in op het meetgebied van 3 volt en sluit de meter dan aan over de op de versterker aangesloten luidspreker. Let er op, dat met de aardzijde van de luidsprekeraansluiting (dat is de ingangsbus, waaraan in de versterker een zwarte draad is gesoldeerd) ook de aardzijde van de meter wordt verbonden.
66. Sluit de oscillator (meetzender) zonder kunstantenne via een condensator van ca. 1000 pF aan op het stuurrooster van het heptode-gedeelte van de buis ECH 81 (lip 2 - buishouder I) en ,,aarde" (de montageplaat).
67. Stel de oscillator nauwkeurig in op 452 kHz en zet de modulatieschakelaar op „interne modulatie $400 \mathrm{~Hz} \cdot 30 \%$. Vergeet niet, dit meetapparaat in te schakelen.
68. Schakel de versterker met de afstemeenheid in en zet de geluidssterkteregelaar van de versterker op maximum (knop geheel rechtsom).
69. Nadat de buizen in het toestel op temperatuur zijn gekomen, zal de 400 Hz -modulatie van het toegevoerde oscillatorsignaal uit de luidspreker hoorbaar zijn, terwijl de meter uitslaat.
70. Regel de sterkte van het zendersignaal nu met behulp van de daarvoor bestemde knop van de oscillator tot de meter een spanning van bijna 0,5 volt aanwijst.
Denk er aan, dat de frequentie-instelling van de oscillator (452 kHz) tijdens het afregelen van de bandfilters niet mag worden gewijzigd.
71. Draai nu voorzichtig aan de kern S II (zie blz. 33a), tot de aanwijzing op de meter maximaal is. Zowel bij verder indraaien als bij verder uitdraaien dient de meteruitslag dus kleiner te worden. Indien de door de meter aangegeven spanning boven ca. 0,5 volt komt, dient de sterkteregelaar van de oscillator wat te worden teruggedraaid.
72. Stel op deze wijze de kern P II in en daarna achtereenvolgens S I en P I. Voor elke kern dient een duidelijk maximum in de meteraanwijzing te worden gevonden.
73. Herhaal eventueel deze afregelingen in de volgorde S II - P II - S I - P I.
74. Wanneer alle kernen nauwkeurig zijn ingesteld, kunnen de oscillator en de antennekring worden afgeregeld en (alleen bij de S 113) het antennefilter. Schakel de versterker met de afstemeenheid even uit, sluit de oscillator via een zg. kunstantenne aan op de antenne- en ,,aarde"-bus en zet het toestel daarna weer aan.
Verander, wanneer de afstemeenheid S 113 wordt afgeregeld, de frequentieinstelling van de oscillator nog niet.
75. (Alleen bij S 113)

Zorg er voor, dat de meter opnieuw ca. 0,5 volt aanwijst. Verdraai dan de beide kernen van het m.f.-filter (te bereiken aan onder- en bovenzijde van de montageplaat) tot de uitslag van de meter minimaal is. Zowel bij het indraaien als het uitdraaien van de kernen dient de meter daarna dus een grotere spanning aan te gaan wijzen.
76. Draai de afstemcondensator van de afstemeenheid met behulp van de afstemknop geheel uit en zorg er voor, dat de wijzer dan precies links op het begin van de schaalverdeling staat (op het cijfer 0). Eventueel de wijzer dus iets op het koord verschuiven.
77. Stel de oscillator in op 1610 kHz (nog steeds 30% gemoduleerd met 400 Hz).
78. Verdraai de instelcondensator C_{8} tot dit oscillatorsignaal doorkomt.
79. Regel vervolgens de instelcondensator $\mathrm{C}_{15} \mathrm{bij}$, tot dit signaal een maximale uitslag van de meter geeft.
80. Draai nu de afstemcondensator geheel in.
81. Stel de oscillator in op $517 \mathrm{kHz}-30 \%$ gemoduleerd met 400 Hz .
82. Verdraai de kern van de oscillatorspoel (OSC.) zo, dat dit signaal doorkomt.
83. Regel de kern van de oscillatorspoel (ANT.) bij tot maximale uitslag van de meter is verkregen.
84. Herhaal de punten $76 \mathrm{t} / \mathrm{m} 83$.
85. Stel de oscillator in op 1500 kHz en stem de afstemeenheid op dit signaal af.
86. Regel dan de instelcondensator C_{15} nauwkeurig af op maximale uitslag van de meter.
87. Stel de oscillator in op 550 kHz en stem de afstemeenheid op dit signaal af.
88. Regel de kern van de antennespoel (ANT.) nauwkeurig bij tot de meter een maximale spanning aanwijst. Hiermee is de afregeling voltooid.

Afregelen zonder meetinstrumenten

Met de volgende aanwijzingen kan een redelijke afregeling worden verkregen indien niet over meetinstrumenten kan worden beschikt.
89. Na het aansluiten van een antenne zullen bij een goed gebouwde afstemeenheid wel enkele zenders hoorbaar zijn, ook zonder dat het toestel is afgeregeld.
Zoek een zender op, die niet te hard doorkomt bij geheel open gedraaide geluidssterkteregelaar van de versterker. Vervang de aangesloten antenne eventueel door een stuk draad van enkele meters lengte om een (met constante geluidssterkte doorkomende) zender niet te sterk te ontvangen.
90. Verdraai nu voorzichtig de kernen van de bandfilters zo, dat de geluidssterkte maximaal is. Houd de volgorde S II - P II - S I - P I aan (zie blz. 33a). Bij een goed gebouwde afstemeenheid, waarbij vooraf ook niet aan de kernen van de bandfilters is gedraaid, zullen deze kernen slechts weinig versteld behoeven te worden.

Indien de afstemeenheid van een indicatiebuis is voorzien, kan de afregeling worden gecontroleerd met de uitslag van deze indicator. Regel dan de daarvoor in aanmerking komende punten af op maximum uitslag van de indicatiebuis. Bij het buistype DM 71 is dat dus op minimum lengte van de lichtkolom, bij de EM 84 juist op maximum lichtoppervlak.
91. Controleer nog even in de volgorde S II - P II - S I - P I of alle kernen inderdaad op maximale geluidssterkte zijn ingesteld. Alle bandfilters zijn dan op dezelfde frequentie afgeregeld. De mogelijkheid bestaat echter, dat dit niet de vereiste "middenfrequentie" van 452 kHz is, maar dit kan worden gecontroleerd nadat de antenne- en oscillatorkring zijn afgeregeld.
92. Draai de afstemcondensator met behulp van de afstemknop geheel uit en zorg er voor dat de wijzer dan precies links op het begin van de schaalverdeling staat (bij het cijfer 0).
93. Stem nu af op een bekende zender, die wordt ontvangen met de wijzer op de linker helft van de schaalverdeling. Hoe meer naar links hoe beter, maar ook de zender Hilversum II (298 m) kan hiervoor dienen.
94. Verdraai de instelcondensator C_{8} nu zo, dat deze zender doorkomt indien de wijzer op de juiste golflengte staat. (Voor Hilversum II is dat dus 298 m ; voor een andere zender eventueel de golflengte opzoeken in een programmablad.)
95. Regel dan de instelcondensator C_{15} af op maximale geluidssterkte.
96. Stem nu af op een bekende zender, die wordt ontvangen met de wijzer op de rechter helft van de schaalverdeling, bijv. Brussel Frans (484 m) of desnoods Hilversum I (402 m).
97. Verdraai de kern van de oscillatorspoel (OSC.) zo, dat de zender doorkomt indien de wijzer op de juiste plaats van de schaalverdeling staat.
98. Regel de kern van de antennespoel (ANT.) bij op maximale geluidssterkte.
99. Als de afregeling tot dusver nauwkeurig is geschied, zullen nu al meer zenders hoorbaar zijn dan vóór het afregelen. Controleer dit even.
100. Herhaal de punten $93 \mathrm{t} / \mathrm{m} 98$ en zoek nu bij voorkeur zenders op die worden ontvangen met de wijzer resp. zoveel mogelijk links en zoveel mogelijk rechts op de schaalverdeling. Regel bij de wijzer links op de schaalverdeling steeds af met de instelcondensatoren C_{8} en C_{15} en bij de wijzer rechts op de schaalverdeling met de kernen OSC. en ANT.
Met de instelcondensator C_{8} en de kern van de oscillatorspoel (die beide deel uitmaken van de „oscillatorkring") kunnen de zenders ,op hun plaats worden gebracht", terwijl met de instelcondensator C_{15} en de kern van de antennespoel (antennekring) de gevoeligheid op maximum kan worden gebracht.
101. Indien op deze wijze is bereikt dat alle zenders worden ontvangen met de wijzer op de juiste plaats op de schaalverdeling, kan worden gecontroleerd of de frequentie, waarop de bandfilters zijn afgeregeld, inderdaad de juiste is.
Neem een stukje draad van 30 cm en soldeer één uiteinde aan de antennebus (hieraan is reeds een blauwe draad gesoldeerd) of monteer een steker
aan dit uiteinde en steek deze in de antenne-aansluitbus. Isoleer het andere uiteinde, zodat de blanke draad niet aangeraakt kan worden en steek dit uiteinde los onder de bedrading tussen het tweede bandfilter en de buishouder van de EBF 89 (dus onder $\mathrm{R}_{5}-\mathrm{C}_{3}$ enz.; zie de bouwtekeningen). Het draadje dient buiten de afstemeenheid om te worden aangebracht, dus langs de buitenzijde van de achterplaat.
102. (Alleen bij S 113)

Het m.f.-filter van de S 113 dient tijdelijk buiten gebruik te worden gesteld. Neem daarom de leiding vanaf lip T_{1} van dit filter naar lip 2 van buishouder I even los van deze lip 2 en verplaats de aansluitdraad van de condensator C_{14} van lip 1 van het filter naar lip 2 van de buishouder. 103. Indien de bandfilters inderdaad op één frequentie zijn afgeregeld, zal de afstemeenheid nu genereren bij afstemming tussen 300 en 400 m . Dit genereren is te horen als een fluittoon die precies bij juiste afstemming op het genereren het laagst is. Wanneer de bandfilters zijn ingesteld op de (juiste) frequentie 452 kHz , zal het genereren optreden bij afstemming op precies 332 m . Het streepje bij het cijfer 5 van de schaalverdeling zal dan juist rechts naast de wijzer zichtbaar zijn. Zijn de bandfilters op een wat te hoge frequentie afgeregeld, dan staat de wijzer bij genereren meer naar het cijfer 4 toe; bij een te lage frequentie staat de wijzer meer naar het cijfer 6 .
104. Bij een duidelijke afwijking van de stand van de wijzer ten opzichte van de juiste stand, dient de gehele afregeling te worden herhaald, nadat alle kernen van de bandfilters even veel in dezelfde richting zijn verdraaid. Bij een te hoge frequentie (de wijzer stond dan te veel naar het cijfer 4) moeten alle kernen van de beide bandfilters iets worden ingedraaid (niet meer dan $1 / 4$ slag rechtsom). Bij een te lage frequentie de kernen uitdraaien (linksom). Verdraai de kernen niet méér dan $1 / 4$ slag, omdat het verschil anders wellicht te groot zal worden. Later kan altijd nog meer worden bijgeregeld. Indien de instelling tenslotte juist is, kan het draadje van de antennebus worden verwijderd.

105. (Alleen bij S 113)

Het m.f.-filter, dat volgens aanwijzing 102 tijdelijk buiten werking is gesteld, kan nu weer worden ingeschakeld. Herstel de verbindingen met dit filter, zoals in bouwtekening VII is aangegeven.
106. (Alleen bij S 113)

Het is niet gemakkelijk het m.f.-filter zonder behulp van meetinstrumenten af te regelen. Het verdient daarom de voorkeur (te meer, omdat ook dit filter in de fabriek reeds nauwkeurig is ingesteld) alleen tot afregeling over te gaan, indien over het gehele middengolfgebied last van fluitstoringen wordt ondervonden. Ga in dat geval als volgt te werk.
Breng weer een draadje aan van de antennebus naar de bedrading bij het tweede bandfilter, zoals in punt 101 is aangegeven. Stem daarna af op de fluittoon nabij het cijfer 5 van de schaalverdeling en verdraai de beide kernen van het m.f.-filter (te bereiken aan onder- en bovenzijde van de montageplaat) tot deze fluittoon met minimale geluidssterkte doorkomt.

Alb. 14. (Afregelen).

Afb. 15. (Afregelen).

enkele Praktische wenken

In dit hoofdstukje worden enkele variaties op de standaard-uitvoeringen van de super-afstemeenheden Pionier S 103 en S 113 besproken, die van pas kunnen komen wanneer het toestel aan bijzondere wensen moet voldoen. Zo wordt de mogelijkheid toegelicht een indicatiebuis aan te sluiten (waarmee juiste afstemming op de zenders zichtbaar kan worden gecontroleerd), de schakeling van een extra versterkbuis (voor ontvangst met een hoofdtelefoon) en die van een ,,katodevolgerbuis" (voor aansluiting via een langere leiding op een willekeurige versterker) worden gegeven, waarna tenslotte wordt besproken hoe de afstemeenheden kunnen worden voorzien van ontvangstmogelijkheden voor extra golfgebieden. In het algemeen is het niet verstandig, met de schakelingen van de afstemeenheden te experimenteren wanneer men niet vertrouwd is met de spelregels van „radio", maar de in dit hoofdstukje gegeven aanwijzingen kunnen zonder bezwar worden opgevolgd. Voorwaarde is echter dat de aanwijzingen strikt worden aangehouden. De voor de aanvullingen benodigde onderdelen zijn niet in de bouwdozen aanwezig.

Aansluiten van de antenne op de S 103

Zoals in de schemabeschrijving van deze afstemeenheid is toegelicht, is bij de Pionier S 103 voor de aansluiting van de antenne op de antennespoel zg. voetkoppeling toegepast. Hierdoor heeft de grootte van de antenne weinig invloed op de antennekring, zodat bij het overgaan op een andere antenne het opnieuw afregelen van deze kring niet noodzakelijk zal zijn.
Het is overigens ook mogelijk de antenne aan te sluiten op de tweede wikkeling $\left(S_{7}\right)$ van de antennespoel of op aansluiting 5 van wikkeling S_{8}. (Zic ook onder „Het aanpassen van de antenne aan de S 102" in de handleiding van deze afstemeenheid.) Eventueel kan daarbij een condensator van ca. 100 pF in serie met de antenne worden opgenomen. De mogelijkheid bestaat dat een van deze beide laatste methoden met een bepaalde antenne een gunstiger resultaat geeft. In dat geval moet er wel rekening mee worden gehouden, dat de antennekring na aansluiting van een andere antenne opnieuw afgeregeld moet worden.

Aansluiten van een afstemindicator

Desgewenst kunnen de super-afstemeenheden S 103 en S 113 worden voorzien van een afstemindicator (ook wel ,,afstemoog" genoemd). Deze mogelijkheid is echter alleen aanwezig wanneer het voedingsgedeelte S 20 V is ingebouwd of wanneer de afstemeenheid is aangesloten op de Pionier Senior-versterker S 202. (Bij de combinatie van een super-afstemeenheid met de versterker S 201 kan de voedingstransformator van de S 201 de benodigde extra elektrische stroom niet leveren.)
In afb. A is het schema gegeven voor de aansluiting van de afstemindicatorbuis EM 84; afb. B geeft een overzicht van de bedrading. Voor de (miniatuur) indicatiebuis DM 71 zijn eveneens schema en bedradingsoverzicht gegeven (afb . C en D). Bij juiste afstemming op een zender heeft bij de buis DM 71 de lichtkolom een minimale lengte; bij de buis EM 84 zijn de beide lichtkolommen dan juist zo groot mogelijk (de lichtkolommen naderen elkaar).

Opmerking
De indicatiebuis DM 70 is in elektrisch opzicht geheel gelijk aan het buistype DM 71. De buisvoet van de DM 71 is echter voorzien van korte pennen, waar-

Ajb. C.

door deze buis in een buishouder kan worden gebruikt, terwijl de DM 70 voorzien is van draadeinden van ca. 35 mm , waaraan direct kan worden gesoldeerd.

De schema's en de bedradingstekeningen spreken voor zichzelf. Met nadruk wordt nog gewezen op de weerstand R_{204} (220 ohm), die in de gloeidraadleiding van de DM 71 (of DM 70) moet worden opgenomen om de door de transformator afgegeven spanning van 6,3 volt terug te brengen tot ca. 1,4 volt, waarop de gloeidraad van deze buis is berekend. Gebruik voor R_{204} een betrouwbare 1 watt-weerstand met een tolerantic (maximaal mogelijke afwijking van de weerstandswaarde) van 5% of minder. Zorg er voor, dat lip 5 van de buishouder van de DM 71 wordt verbonden met de geaarde zijde van de gloeidraad van de combinatiebuis EBF 89 (buishouder II). Verwissel dus eventueel de beide bruine draden aan de lippen 4 en 5 van buishouder II. Het verdient aanbeveling, voor de leidingen naar de afstemindicator soepel
draad te nemen. Het doet er uiteraard weinig toe, door welk gat van de montageplaat deze leidingen worden gevoerd.
Bij de DM 71 is het gewenst stukjes ,isolatiekous" over de aansluitlippen van de buishouder te schuiven. Schuif deze stukjes „kous" vóór het solderen op de draden en na het solderen over de aansluitlippen. De zes draden bij de EM 84 en de vier draden bij de DM 71 mogen in elkaar worden gevlochten of samen in een stukje (wijde) isolatiekous worden gestoken. De indicatiebuis wordt achter een opening in het kastje van de afstemeenheid bevestigd.

Benodigd materiaal:

1 buis DM 71 met buishouder (subminiatuur) of 1 buis DM 70
1 weerstand 1.000 .000 ohm (1 M); $1 / 4$ watt
1 weerstand 6.800 .000 ohm (6 M 8); $1 / 4$ watt
1 weerstand 220 ohm - 5% tolerantie; 1 watt
1 drielips draadsteun
1 boutje M 3×6 met moer en tandring
materiaal voor de bevestiging van de indicator tegen de kastwand bruin, rood en groen montagedraad (soepel)
of:
1 buis EM 84 met buishouder (noval)
1 weerstand 470.000 ohm (470 K); $1 / 4$ watt materiaal voor de bevestiging van de indicator tegen de kastwand bruin, zwart, rood, oranje en groen montagedraad (soepel).

Aansluiting op cen andere versterker

De afstemeenheden S 103 en S 113 zijn in de eerste plaats bedoeld om te worden gebruikt in combinatie met een Pionier Senior-versterker S 201 of S 202. Het is evenwel ook zeer goed mogelijk deze afstemeenheden bij een andere versterker, bijv. van een HiFi-installatie, te gebruiken. Om lastige verbindingen voor de voedingsspanningen te vermijden, is het dan in het algemeen wel gewenst het voedingsgedeelte S 20 V in te bouwen. In ieder geval is dat nodig, wanneer de versterker de extra spanningen niet kan leveren (nodig zijn: een gelijkspanning van ca. 200 volt bij een stroom van ca. 14 mA en een wisselspanning van 6,3 volt bij een stroom van $0,6 \mathrm{~A}$).
Bij een grote afstand tussen de afstemeenheid en de versterker verdient het aanbeveling de afstemeenheid bovendien te voorzien van een "katodevolgerbuis". Hierdoor wordt voorkomen dat verlies van hoge tonen optreedt als gevolg van het lange (afgeschermde) verbindingssnoer en ook wordt de gevoeligheid van dit snoer voor storingen (b.v. brom) verminderd.
Wat betreft het plaatsen van deze extra buis op de montageplaat, geldt hetzelfde als voor de extra versterkbuis onder ,,Luisteren met een hoofdtelefoon" wordt gezegd. Het schema van de katodevolger is gegeven in afb. E.
Voor degenen die niet op de hoogte zijn van de eigenschappen van een katodevolgerschakeling nog even het volgende. De buis versterkt in deze schakeling
niet, maar werkt als een soort impedantie-transformator. De impedantie (elektrische weerstand) aan de ingang van de schakeling is hoog (enkele miljoenen ohm), terwijl de uitgangsimpedantie juist laag is (ca. 500 ohm). Door deze lage uitgangsimpedantie heeft de capaciteit van het verbindingssnoer (dat in dit geval als een condensator kan worden beschouwd) nagenoeg geen invloed op de hoge frequenties van de aan de versterker toe te voeren elektrische trilling. Bovendien is de gevoeligheid voor storingen van zo'n „laagohmige" leiding gering.

Benodigd materiaal:

1 buis EF 80 met buishouder (noval)
1 weerstand 1.000 .000 ohm (1 M); $1 / 4$ watt
1 weerstand 47.000 ohm (47 K); $1 / 4$ watt
1 weerstand 1500 ohm (1 K 5); $1 / 4$ watt
1 polyestercondensator 220.000 pico-farad (220 K) - 125 volt
bevestigingsmateriaal voor de buishouder
bruin, rood en zwart montagedraad
afgeschermd snoer.

Luisteren met een hoofdtelefoon

In het algemeen zullen de afstemeenheden S 103 en S 113 worden gebruikt in combinatie met één van de Pionier Senior-versterkers S 201 en S 202, zodat luidsprekerweergave wordt verkregen. Het is desgewenst echter ook mogelijk een hoofd- of oortelefoon te gebruiken. In dat geval is het in de eerste plaats
noodzakelijk dat het voedingsgedeelte S 20 V is ingebouwd. Verder is het gewenst een extra versterkbuis te gebruiken, omdat het signaal dat na de demodulator in de S 103 of S 113 beschikbaar is te zwak is voor een hoofdtelefoon. Voor deze versterkbuis kan een buishouder worden geplaatst in het gat naast de afstemcondensator maar dan is het niet meer mogelijk het gehele voedingsgedeelte op de montageplaat te monteren. Dit zal dan op een afzonderlijke montageplaat of desnoods op een plankje kunnen worden aangebracht. Zorg er wel voor de gelijkrichtcel aan een metalen plaat te bevestigen in verband met de koeling.
In de afbeeldingen F en G zijn twee schema's voor een versterkbuis gegeven. Hierin wordt gebruik gemaakt van een pentode EF 86, die echter in afb. G als

triode is geschakeld (2e rooster met de anode doorverbonden). In dat geval is de versterking wat minder dan bij gebruik als pentode (afb . F), maar er zijn minder onderdelen nodig en de versterking zal in de meeste gevallen toch nog ruim voldoende zijn. De geluidssterkteregelaar is in beide schema's aangegeven als potentiometer P_{201}. Het is ook mogelijk de weerstand R_{208} als potentiometer uit te voeren en voor P_{201} een vaste weerstand te nemen. De gloeidraadaansluitingen van de extra versterkbuis (lippen 4 en 5) worden via bruine draden doorverbonden met de lippen 4 en 5 van één van de andere buishouders. Beide versterkers zijn geschikt voor aansluiting van zowel een "normale" (elektro-magnetische) hoofdtelefoon als van een kristaltelefoontje (zoals o.m. bij de Pionier I en II wordt gebruikt).

Benodigd materiaal:

1 buis EF 86 met buishouder (noval)
1 potentiometer $1.000 .000 \mathrm{ohm}(1 \mathrm{M})$; logaritmisch weerstandsverloop, bijv. het Philips type E 098 CG/60 C 17, eventueel gecombineerd met een schakelaar voor het inschakelen van het voedingsgedeelte S 20 V , bijv. het Philips type E 098 CD/60C17.
1 weerstand 1.000 .000 ohm (1 M); $1 / 4$ watt
1 weerstand $390.000 \mathrm{ohm}(390 \mathrm{~K}) ; 1 / 4$ watt
1 weerstand $100.000 \mathrm{ohm}(100 \mathrm{~K})$; $1 / 4$ watt
1 weerstand 1000 ohm (1 K); $1 / 4$ watt
1 elektrolytische condensator 100 micro-farad ($100 \mu \mathrm{~F}$) - 4 volt
1 polyestercondensator 220.000 pico-farad (220 K) - 400 volt
1 keramische condensator 10.000 pico-farad (10 K)
bevestigingsmateriaal voor de buishouder bruin, zwart en rood montagedraad
of:
1 buis EF 86 met buishouder (noval)
1 potentiometer $1.000 .000 \mathrm{ohm}(1 \mathrm{M})$; logaritmisch weerstandsverloop, bijv. het Philips type E 098 CG/60 C 17, eventueel gecombineerd met een schakelaar voor het inschakelen van het voedingsgedeelte S 20 V , bijv. het Philips type E 098 CD/60 C 17.
1 weerstand $1.000 .000 \mathrm{ohm}(1 \mathrm{M}) ; 1 / 4$ watt
1 weerstand 100.000 ohm (100 K); $1 / 4$ watt
1 weerstand 2200 ohm ($2 \mathrm{~K} \mathrm{2);} 1 / 4$ watt
1 elektrolytische condensator 100 micro-farad ($100 \mu \mathrm{~F}$) - 4 volt
1 keramische condensator 10.000 pico-farad (10 K)
bevestigingsmateriaal voor de buishouder
bruin, zwart en rood montagedraad.

Extra ontvangstmogelijkheden

De afstemeenheden S 103 en S 113 zijn in de standaard-uitvoeringen alleen geschikt voor ontvangst van "middengolfzenders", d.w.z. zenders waarvan de frequentie van de draaggolf ligt in het zg. middengolfgebied. Het is mogelijk, hieraan nog extra ontvangstgebieden toe te voegen. De afstemeenheid S 103 kàn nog van één extra ontvangstgebied worden voorzien, de S 113 zelfs van twee. Hierbij kan een keuze worden gemaakt uit het langegolfgebied, het kortegolfgebied en eventueel de zg. visserijband. Voor elk extra ontvangstgebied moet een extra antennespoel en een extra oscillatorspoel met bijbehorende condensatoren worden ingebouwd, terwijl ook nog moet worden voorzien in de mogelijkheid van het ene ontvangstgebied op het andere over te schakelen. In de montageplaten zijn hiervoor extra gaten aanwezig. In de afbeeldingen H en J is voor de beide afstemeenheden aangegeven, waar de spoelen met bijbehorende instelcondensatoren gemonteerd kunnen worden. De antennespoelen zijn aangegeven met ANT, de oscillatorspoelen met OSC. De spoelen, die bij de standaard-uitvoering reeds op de montageplaat zijn gemonteerd, zijn verder voorzien van het cijfer 1 , de extra spoelen hebben het cijfer 2 of (bij de S 113) 3.
De schakelaar voor het omschakelen van de ontvangstgebieden kan worden

Afb. H.

Afb. J.

gemonteerd in een gat van de voorplaat; de as steekt dan door het gat van de indicatieplaat, waarin normaal een plastic sierdop is aangebracht.
De wijze van aansluiting van de spoelen en van de schakelaar is aangegeven in het schema afb. K. Dit schema is gebaseerd op de Philips miniatuur-spoelen, die zijn ondergebracht in busjes van ca. 10 mm in het vierkant. De codenummers, waaronder deze spoelen worden geleverd, zijn in tabel I opgenomen. In deze tabel en in het schema zijn de volgende afkortingen gebruikt.

LG = langegolfgebied ($384-150 \mathrm{kHz} ; 780-2000$ meter)
MG $=$ middengolfgebied ($1610-517 \mathrm{kHz} ; 187$ - 580 meter)
$\mathrm{KG}=$ kortegolfgebied ($18,75-6 \mathrm{MHz} ; 16-50$ meter)
VG $=$ visserijgolfgebied (5000-1610 kHz; 60-187 meter)

Afb. K.
C_{t} - instelcondensator 30 pF max.
C_{205} - 56 pF - tolerantie 10% (keramisch)
$C_{206}-160 \mathrm{pF}$ - tolerantie 1% (keramisch)
$C_{207}-470{ }_{p F} \cdot$ tolerantie 1% (keramisch) (reeds in de bouwdoos aanwezig)
C_{208} - 82 pF - tolerantie 10% (keramisch)
$C_{209}-1500 \mathrm{pF}$ (1 K 5) - tolerantie 1% (keramisch)
Zie voor de overige onderdelen het schema van de afstemeenheid S 103 of $S 113$.

Van de drie spoelstellen, die in het schema zijn aangegeven, moet er voor de S 103 in ieder geval één vervallen, waarbij de schakelaar dus een type met twee standen kan zijn. Eén van de aangegeven extra spoelstellen (voor LG en KG) kan desgewenst worden vervangen door een spoelstel voor de visserijband, dat onder het schema is aangegeven.
Per twee spoelen is één (brede) bevestigingsveer nodig van het type dat ook voor de bandfilters gebruikt wordt. De instelcondensatoren C_{t}, die in het schema zijn aangegeven, kunnen alle zg. luchttrimmers van 30 pF zijn (dit type is ook voor het middengolfgebied toegepast). De schakelaar dient vier schakelsecties (vier „moedercontacten") te bezitten en voor elk ontvangstgebied één stand. Voor één extra ontvangstgebied is dus een schakelaar nodig met vier secties - twee standen, voor twee extra ontvangstgebieden een schakelaar met vier secties - drie standen. In verband met de plaatsruimte is het nodig een type te nemen, waarbij alle contacten op één isolatieplaatje zijn aangebracht. Het verdient verder aanbeveling een extra 5 lips-draadsteun te gebruiken om de bedrading overzichtelijk te houden. Deze draadsteun wordt dan evenwijdig aan de voor- en achterplaat gemonteerd boven een gat, waarop reeds een dubbele soldeerlip is aangebracht. De vier lippen, die niet met het "voetje" van de draadsteun zijn verbonden, worden gebruikt als steunpunten voor de aansluitdraden van de onderdelen die met de vier moedercontacten (A, B, C en D) zijn verbonden.
De weerstanden en condensatoren, die in het schema zijn voorzien van cijfers beneden de 100 , kunnen ook worden teruggevonden in de complete schema's van de afstemeenheden (blz. 16 en 46), evenals de overige aansluitingen van de combinatiebuis ECH 81.

Tabel I

LG - antennespoel - typenummer 921/780-2000 m (A3.125.37)
LG - oscillatorspoel - typenummer 923/780-2000 m (A3.125:76)
KG - antennespoel - typenummer 921/16 - 50 m (A3.125.27)
KG - oscillatorspoel - typenummer 923/16 - 50 m (A3.125.56)
VG - antennespoel - typenummer $921 / 60$ - 187 m (A3.125.33)
VG - oscillatorspoel - typenummer $923 / 60$ - 187 m (A3.125.68)

Benodigde onderdelen:

```
1 keuzeschakelaar (zie tekst)
1 5-lips draadsteun
LG-ontvangstgebied
1 \text { antennespoel}
1. oscillatorspoel
2 instelcondensatoren 30 pF max.
1 keramische condensator 56 pF, tolerantie 10%
1 \text { keramische condensator 160 pF, tolerantie 1\%}
```


KG-ontvangstgebied

1 antennespoel
1 oscillatorspoel
2 instelcondensatoren 30 pF max.
1 keramische condensator 82 pF - tolerantie 10%
VG-ontvangstgebied
1 antennespoel
1 oscillatorspoel
2 instelcondensatoren 30 pF max.
1 keramische condensator $1500 \mathrm{pF}(1 \mathrm{~K} \mathrm{5})$ - tolerantie 1%.

Afb. 16. De super-afstemeenheid Pionier $S 113$ in standaard-uitvoering, voor aansluiting op een Pionier Senior-versterker.

HET SCHEMA VAN DE SUPER-AFSTEMEENHEID PIONIER S 113

Zoals bekend kan de schakeling van elk elektrisch apparaat overzichtelijk worden weergegeven in een ,schema", waarin alle onderdelen vereenvoudigd zijn getekend. In het volgende zal het schema van de super-afstemeenheid S 113 worden besproken. Hierbij wordt er van uitgegaan, dat de lezer reeds enigszins op de hoogte is van de algemene gang van zaken bij radio-overdracht en van de functies en gedragingen van onderdelen als condensatoren, weerstanden, spoelen en radiobuizen. Over enkele van deze onderwerpen is in voorafgaande hoofdstukjes al iets gezegd; degenen die meer willen weten van de overige begrippen worden verwezen naar bij voorbeeld de handleiding van de Pionier II (junior transistor-radio), waarin o.a. op het systeem van radiooverdracht en op het demoduleren van een radiogolf nader wordt ingegaan. Voor de algemene opbouw van een super-ontvangtoestel en de verschillen tussen deze en een één- of tweekrings-ontvanger wordt verwezen naar de schemabeschrijving van de Pionier S 103 (blz. 13).
Voor het bouwen van een Pionier Senior-toestel is het overigens beslist niet noodzakelijk de schemabeschrijving geheel te begrijpen of iets van de radiotechniek af te weten. Aan de hand van de overzichtelijke tekeningen en de uitvoerige bouwbeschrijvingen kunnen ook zij die nooit eerder, ,aan radio deden" deze hobby met succes beoefenen. Het hierna volgende is dus vooral bestemd voor degenen die het onderste uit de kan willen hebben en - mede daardoor - het volle Pionier plezier willen beleven. Daarnaast zal het voor de meer gevorderden een eenvoudige leidraad vormen bij het "lezen" van het schema.

De antennekring

De antennekring van de Pionier $S 113$ bestaat uit wikkeling S_{13} van de antennespoel, één van de beide op één as gemonteerde afstemcondensatoren (C_{16}) en de instelcondensator C_{15}. (Deze laatste kan zo worden ingesteld dat met de afstemcondensator het gewenste frequentiegebied wordt bestreken.) Met behulp van de afstemknop kan de afstemcondensator zo worden ingesteld, dat deze ,,ingangskring" voor de draaggolf van een bepaalde zender voorkeur heeft. De antenne is met de ingangskring gekoppeld via wikkeling S_{14} van de antenne-

spoel en de condensator C_{19}. De antennespoel, die dus beide wikkelingen S_{13} en S_{14} bevat, is zo gemaakt dat de lengte van de antenne weinig invloed heeft op de afstemming van de ingangskring.
De koppeling van de antennekring met het stuurrooster van het heptodegedeelte van de combinatiebuis ECH 81 vindt plaats via de condensator C_{14} en een dubbel filter. Dit laatste wordt gevormd door een ,,parallelkring" (wikkeling $\mathrm{S}_{12}+$ condensator C_{11}) en een "seriekring" (wikkeling $\mathrm{S}_{11}+$ condensator C_{7}). De parallelkring is opgenomen tussen de condensator C_{14} en het stuurrooster, de seriekring tussen het stuurrooster en „aarde" (de montageplaat). Dank zij dit dubbele filter kunnen zendersignalen met frequenties die in de buurt van de middenfrequentie liggen niet tot het stuurrooster van de heptode doordringen. Zonder het m.f.filter zouden deze zendersignalen over het gehele frequentiegebied fluitstoringen kunnen veroorzaken in verband met de uiteraard grote gevoeligheid van de afstemeenheid voor signalen met de middenfrequentie.

De mengschakeling en de oscillator

Voor de mengschakeling wordt in de Pionier S 113 gebruik gemaakt van het heptode-gedeelte van de combinatiebuis ECH 81. De oscillator wordt gevormd door het triode-gedeelte van deze combinatiebuis, de oscillatorspoel (S_{9} en S_{10}) en het tweede gedeelte $\left(C_{9}\right)$ van de dubbele afstemcondensator met de bijbehorende weerstanden en condensatoren. Het oscillatorsignaal wordt aan het derde rooster van de "mengbuis" (de heptode) toegevoerd vanaf het stuurrooster van de triode.
Zoals in de schemabeschrijving van de Pionier S 103 is toegelicht, worden in de mengbuis het zendersignaal (afkomstig van de antennekring) en het oscillatorsignaal gemengd, waarbij onder meer een signaal ontstaat met een frequentie gelijk aan het verschil van beide toegevoerde frequenties. Deze verschilfrequentie dient bij elke stand van de afstemcondensator constant te zijn (gelijk aan de middenfrequentie). Dit wordt bereikt door de juiste keuze van de onderdelen van de oscillatorkring, die wordt gevormd door de wikkeling S_{10} van de oscillatorspoel, de afstemcondensator C_{9}, de instelcondensator C_{8} en de beide condensatoren C_{21} en C_{22}. De frequentie van het oscillatorsignaal wordt bepaald door de stand van C_{9}, die met de afstemcondensator C_{16} van de antennekring op één as is gemonteerd. De oscillatorkring is verbonden met de anode van de triode via de condensator C_{20}; de tweede wikkeling (S_{9}) van de oscillatorspoel is met het stuurrooster van de triode verbonden via de condensator C_{12}. (Deze beide condensatoren zorgen. ervoor, dat de oscillatorspoel geen invloed heeft op de gelijkspanningen van de triode.) De anodespanning van de triode wordt toegevoerd via de weerstand R_{6}; de verbinding tussen het stuurrooster en ,aarde" (de montageplaat) wordt gevormd door de weerstand R_{7}.
Het in de mengbuis verkregen middenfrequentiesignaal is aanwezig in de anodestroom van deze mengbuis en wordt toegevoerd aan wikkeling S_{3} van het eerste bandfilter. Via deze wikkeling wordt ook de anodespanning aan de heptode toegevoerd. Het tweede en vierde rooster van de mengbuis krijgen, zoals voor een goede werking van de buis noodzakelijk is, een positieve gelijkspanning toegevoerd via de weerstand R_{8}; de (ontkoppel)condensator C_{13} vormt een kortsluiting voor de wisselspanningen aan deze beide roosters. De negatieve roosterspanning voor de heptode wordt toegevoerd via de weerstand R_{9}, die weer via de weerstand R_{1} met R_{3} is verbonden. Dit houdt verband met de automatische versterkingsregeling, waarop in de schemabeschrijving van de Pionier S 103 nader is ingegaan. De gemeenschappelijke katode van de combinatiebuis is rechtstreeks met., aarde" verbonden.

M.f.-versterker en demodulator

De schakeling van deze overige gedeelten van de super-afstemeenheid Pionier S 113 is geheel gelijk aan die van de Pionier S 103, zodat kan worden verwezen naar de schemabeschrijving van deze laatste op blz. 17.
BOUWBESCHRIJVING PIONIER SENIOR SUPER-AFSTEMEENHEID S 113
buiten de moer aan de binnenzijde van de voor-
plaat uitsteken. Zie het detail A bij tekening IV. 113. Monteer aan de onderzijde van de grote montageaangebracht is, de draadsteun met een boutje M 3×6 met moer en tandring.
114. Ongeveer in het midden van de grote montageplaat bevinden zich drie gaten van 6 mm . Druk in deze gaten rubbertulen en breng in elke tule een klein afstandsbusje aan.
115. Plaats de dubbele a
115. Plaats de dubbele afstemcondensator op de sator komen boven de rubbertulen. Breng in de
 in de rubbertulen boutjes M 3×10, voorzie deze aan de onderzijde elk van een sluitring en een
tandring en zet ze vast met moeren M3. Voor twee van de boutjes is in tekening IV gedetailleerd de montage aangegeven.
Zorg er voor, dat de koperen platen van de condensator niet kunnen verbuigen of op andere
 de condensator tijdens het monteren geheel in
gedraaid.
Aan de voorzijde van de afstemcondensator is een lange lip bevestigd, die bij de as contact maakt met het huis van de condensator. Zorg er voor, dat deze lip de grote montageplaat niet raakt.
109. Monteer het lager voor de afstemas, zoals in detail C bij tekening IV is aangegeven. Tussen de achterzijde van de voorplaat en de grote moer komt een tandring van 10 mm .
110. Breng een druppeltje dunne olie (b.v. naaimachineolie) op het dunne einde van de afstemas en breng dit uiteinde in het lager. Zorg er voor, dat er geen olie op het dikke gedeelte van de as komt. 111. Druk het kleine klemveertje in de groef, die is aangebracht in het achter het lager uitstekende gedeelte van de afstemas. Zo kan de as wel
draaien, maar kan er niet worden uitgetrokken. draaien, maar kan er niet worden uitgetrokken.
Zie de details B en C bij tekening IV.
112. Steek het snaarwieltje op het boutje M $2,6 \times 15$ иер дə э!

 behulp van een tweede moer M 2,6.
Bij juiste montage zal het boutje

137. Monteer vanaf lip 3 van de oscillatorspoel naar
lip 9 van buishouder I de condensator C_{12} dicht
bij de grote montageplaat. Soldeer aan lip 3 van
de spoel; aan lip 9 van de buishouder nog niet
solderen.
138. Soldeer aan lip 9 van buishouder I tegelijk een
aansluitdraad van de weerstand R_{7} en een blank
verbindingsdraadje naar lip 7 . Soldeer ook aan
lip 7 en zorg er voor dat het blanke draad de
montageplaat en lip 8 van de buishouder niet
raakt. Houd R_{7} zo dicht mogelijk bij de montage-
plaat en steek de tweede aansluitdraad los in de
lip op de montageplaat.
139. Leg een blauwe leiding van ca. $61 / 2$ cm tegen de
montageplaat aan vanaf de met C_{9} gemerkte lip
van de dubbele afstemcondensator, die via een gat
nabij het midden van de grote montageplaat
bereikbaar is, naar lip T_{1} van de oscillatorspoel.
Aan lip C_{9} solderen, aan lip T_{1} nog niet.
140. Steek in lip T_{1} van de oscillatorspoel bovendien
een blauwe drad van 4 cm en één van de aansluit-
draden van de condensator C_{20} en soldeer dan dit
punt. Denk er aan, dat nog voldoende ruimte
open moet blijven voor de stekerbusplaat, die hier
straks aan de achterplaat wordt gemonteerd.
141. Voer het andere uiteinde van de blauwe leiding
van 4 cm naast de oscillatorspoel door het gat in
de montageplaat en steek de tweede aansluitdraad
van de condensator C_{20} los in lip 8 van buis-
houder I.
142. Verbind met blank montagedraad de lippen 1 en
5 van de antennespoel met de nabijgelegen lip op
de montageplaat en vervolgens lip 5 van de
E L E K T R I S C H E M O N T A G E
Eerste gedeelte, zie tekening VI
122. Laat de soldeerbout maar vast warm worden.
Controleer, alvorens met de elektrische montage
te beginnen, of de buishouders, de bandfilters en
de spoelen in de juiste stand zijn gemonteerd. Ga
ook nog even na, of de verschillende soldeer-
lippen aan de boven- en onderzijde van de grote
montageplaat zijn bevestigd.
123. Draai twee stukken montagedraad met bruine
isolatie, elk ongeveer 8 cm lang, in elkaar en
soldeer deze aan de lippen 4 en 5 van buishouder
II. Soldeer de andere uiteinden van deze draden
aan de lippen 4 en 5 van buishouder I samen met
twee bruine draden van 20 cm. Draai ook deze
beide laatste draden, die later op de versterker
worden aangesloten, in elkaar.
Indien de afstemeenheid wordt voorzien van een
eigen voedingsgedeelte (pakket S 20 V) is het beter
de bruine leidingen van 20 cm voorlopig nog niet
aan te brengen.
124. Mak met blank montagedraad de verbindingen
tussen lip 6 van buishouder II en lip P van het
tweede bandfilter, vervolgens tussen lip 8 van
dezelfde buishouder en lip T van het bandfilter
en tenslotte tussen lip 2 van de buishouder en lip
T van het eerste bandfilter. Houd deze draden zo
kort en recht mogelijk.
125. Monteer ook een kort, recht, blank stukje draad
van lip 6 van buishouder I naar de nabijgelegen
lip p van het eerste bandfilter.
oscillatorspoel met deze ,,aardlip". Soldeer aan de lippen van de spoelen, maar nog niet aan de lip op de montageplaat
143. Verwijder voorzichtig aan de beide uiteinden van het stukje afgeschermd snoer ongeveer 2 cm van de buitenste isolatie. Rafel aan weerszijden met een puntig voorwerp de gevlochten metalen
afscherming uiteen en draai de dunne draadjes van deze afscherming dan aan één zijde van het snoer in elkaar. Van het vrijgekomen binnensnoer moet aan deze zijde nu ongeveer $0,5 \mathrm{~cm}$ van de isolatie worden weggehaald. Deze gehele bewerking is duidelijk uitgebeeld in de foto op blz. 55.
144. Het blank gemaakte uiteinde van het binnensnoertje gat van lip 5 van de draadsteun. Soldeer snel, opdat de isolatie van het binnensnoer geen gelegenheid krijgt om te smelten. Houd tiidens

 afgekoeld. Snel solderen wordt bevorderd door het uiteinde van het binnensnoer (en straks de afscherming) vooraf te „vertinnen" (vooraf te
145. Soldeer de in elkaar gedraaide afscherming aan deze zijde van het snoer in het onderste gat van lip 4 van de draadsteun.
146. Haal het andere uiteinde van het afgeschermde snoer door een van de gaten in de achterplaat. Indien de afstemeenheid wordt bevestigd aan éen van de versterkers S 201 of S 202, kan de uiteen-
gerafelde afscherming aan deze ziide van het snoer worden weggeknipt. Hier wordt straks een steker gemonteerd.
Indien de afstemeenheid niet met een versterker wordt samengebouwd en op zich zelf staand zal
126. Maak met korte, blanke draden de verbindingen 126. Massen lip 7 van buishouder II de centrale bus van deze buishouder, en tussen lip 3 en de centrale van deze buishouder, en tussen lip 3
bus. Soldeer nog niet aan deze lip 3 . 127. Verbind dan de centrale bus van buishouder II via lip 9 met de nabij deze buishouder op mip 9 te solderen, maar soldeer nog niet aan de lip op de montageplaat, omdat hier nog meer draden zullen samenkomen.
128. Leg dicht bij de montageplaat een blanke leiding vanaf de centrale bus van buishouder I via lip 3 naar de zich rechts voor de buishouder bevindende wel aan lip 3, maar nog niet aan de lip op de montageplaat.
129. Soldeer aan lip 1 van het tweede bandfilter een aansluitdraad van de weerstand R_{2} en een aansluitdraad van de condensator C_{3}. Steek de andere aansluitdraad van R_{2} voorlopig los in het onderste gat van lip 1 van de draadsteun en de tweede aansluitdraad van C_{3} in het gat van de soldeerlip op de montageplaat. Aan deze beide laatstgenoemde lippen dus nog niet solderen.
 R_{3} elk een aansluitdraad in het onderste gat van
lip 1 van de draadsteun en soldeer dit punt.
131. Soldeer de andere aansluitdraden van C
131. Soldeer de andere aansluitdraden van C_{2} en R_{3}, samen met een zwarte draad van 25 cm en de twee draden die daat reeds aanwezig zijn, aan de De zwarte draad van 25 cm wordt later op de versterker aangesloten.
Indien de afstemeenheid wordt voorzien van een eigen voedingsgedeelte (pakket $S 20 \mathrm{~V}$) is het beter deze lange zwarte draad pas later aan te brengen.

$$
\begin{aligned}
& \text { worden gebruikt (bijv. met ingebouwd voedings- } \\
& \text { gedeelte } \mathrm{S} 20 \mathrm{~V} \text {), mag de afscherming niet worden } \\
& \text { weggeknipt. } \\
& \text { 147. Verwijder van het binnensnoer aan deze zijde van } \\
& \text { het afgeschermde snoer weer over ca. } 0,5 \mathrm{~cm} \text { de } \\
& \text { isolatie, draai de blanke draadjes dan ineen en } \\
& \text { soldeer ze vervolgens snel aan elkaar vast, zodat } \\
& \text { een stevig stukje draad ontstaat. Monteer daarna } \\
& \text { de steker, zoals in de tekening is aangegeven. }
\end{aligned}
$$

Afb. 17. Het gereedmaken van een stukje afgeschermd snoer
voor de montage. Van links naar rechts: de buitenste isolatie 3

132. Monteer de condensator C_{6} dicht tegen de
montageplaat aan. Eén aansluitdraad wordt montageplaat aan. Eén aansluitdraad wordt de andere aansluitdraad, samen met een gele leiding van 9 cm , in het onderste gat van lip 3 van de draadsteun.
133. Leg de gele leiding dicht tegen de montageplaat aan en soldeer het tweede uiteinde samen met een het eerste bandfilter. Steek de andere aansluitdraad van R_{9} voorlopig los in lip 2 van buishouder I.
134. Soldeer in het onderste gat van lip 6 van de draadsteun tegelijk een aansluitdraad van de weerstand R_{4} en een rode draad van 12 cm . Steek de tweede aansluitdraad van R_{4} in $\operatorname{lip} Q$ van het tweede bandfilter en het andere uiteinde van de rode draad in lip Q van het eerste bandfilter. Aan beide lippen Q van de bandfilters wordt nog niet gesoldeerd.
135. Breng tussen de lippen 1 en 3 van de draadsteun de weerstand R_{1} aan en tussen de hippen 1 en S^{2}
de condensator C_{1}. Haal één aansluitdraad van C_{1} ook nog door het bovenste gat van lip 2 van de draadsteun om meer steun te krijgen en breng deze condensator loodrecht op de grote montage36. Plat.
136. Aan de achterzijde van het huis van de afstemcondensator is een soldeerlip bevestigd. Breng een
zwarte draad van 7 cm door het gat in de montageplaat dat zich juist onder deze lip bevindt en soldeer dan de draad aan de lip. Steek het andere uiteinde voorlopig los in de soldeerlip op de montageplaat (naast het antennefilter).

is uitgebeeld in een detail bij tekening VII. Buig de soldeerlip aan weerszijiden iets naar boven, steek de middenpen van elke instelcondensator in
 op de montageplaat staan en dat ze elkaar niet raken.
164. Soldeer de blauwe en de groene draad, die door

 groene draad aan de andere instelcondensator (C_{15}).
165. Tenslotte moet de condensator C_{22} nog worden aangebracht. Soldeer een aansluitdraad van deze

 lip op de montageplaat.
166. De gehele elektrische montage is nu voltooid. Controleer eerst rustig en zorgvuldig of alle
onderdelen en leidingen juist zijn gemonteerd en of alle verbindingspunten goed zijn gesoldeerd. Als alles precies volgens de handleiding en de tekeningen is uitgevoerd, kan de afstemeenheid worden afgewerkt.
166.
lippen van de buishouder. Kort de tweede aan-
sluitdraad van C_{13} in en soldeer deze in de
dubbele soldeerlip op de montageplaat. In deze
zijde van de soldeerlip komen nu vijf draden
samen; zorg er voor, dat deze alle vijf goed vast komen.
152. Steek in lip T_{1} van de antennespoel twee groene draden (één van ca. 4 cm en één van ca. 8 cm) en een ingekorte aansluitdraad van de condensator C_{14} en soldeer dit punt.
153. Soldeer het andere uiteinde van de langste groene draad aan de met C_{16} gemerkte lip van de dubbele
afstemcondensator (weer bereikbaar via een gat in de grote montageplaat) en voer de tweede groene draad naast de antennespoel door het grote gat in de montageplaat.
154. Steek een ingekorte aan
154. Steek een ingekorte aansluitdraad van de condensator C_{11} in lip T_{1} van het m.f.-filter, samen met een ingekorte aansluitdraad van de condensator
C_{7}. Breng dan het blanke doorverbindingsdraadje vanaf deze lip naar lip 2 van buishouder I aan en soldeer lip T_{1} van het m.f.-filter. Soldeer ook de
twee in lip 2 van buishouder I samenkomende twee in lip 2 van buishouder I samenkomende draden.
155. Soldeer de tweede aansluitdraad van C_{7}, eveneens ingekort, in lip T_{2} van het m.f.-filter.
156. Breng de tweede aansluitdraad van C_{11} in het gat
van lip 1 van het m.f.-filter, samen met de tweede

Afb. 18. Overzicht van de bedrading aan de onderzijde van een
gebouwde Pionier Senior super-atstemeenheid S 113 .

Indien de afstemeenheid op zich zelf staand moet worden gebruikt met ingebouwd voedingsgedeelte $S 20 \mathrm{~V}$, moet van hier af de montage worden voortgezet aan de hand van de betrokken bouwbeschrijving op
blz. 60 . Indien de afstemeenheid wordt gecombineerd met een versterker $S 201$ of $S 202$, kan de montage worden voortgezet volgens de hierna opgenomen aanwijzingen 173 t/m 179.
173. Breng ook aan de onderzijde van de achterplaat een koppelstripje aan met behulp van een boutje M 3×6 met moer en tandring; zie tekening IX.
174. Maak de afstemeenheid nu vast aan de versterker
met behulp van de vier koppelstripjes, zie

175. De rode, zwarte en bruine leidingen die in de 175. Derode, VI VII ziin ange worden verbonden met de daarvoor aangeduide punten in de versterker S 201 of S 202. Deze zijn in de bouwbeschrijving van de versterker $S 201$ aangegeven in tekening
versterker S 202 in tekening IV.

Denk er aan, dat bij gebruik van de versterker S 201 in combinatie met de super-afstemeenheid S 113 de weerstand R_{8} in de S 201 de waarde
390 ohm moet hebben (voor de versterker zonder afstemeenheid was deze waarde 3300 ohm). In de
 van de afstemeenheid is bevestigd, in de 177. , Plaats de buizen ECH 81 en EBF 89 in
177. Plaats de buizen ECH 81 en EBF 89 in de buishouders van de afstemeenheid (de ECH 81 nabi) EBF 89 tussen de twee bandfilters in buishouder II). Breng ook de buis (buizen) van de versterker weer aan. Let er bij de versterker S 202 op delk elke buis voorzichtig maar stevig aan, tot de glazen ballon op het keramische gedeelte van de buishouder rust.
178. Sluit de luidspreker op de versterker aan en de antenne en zich het dichtst bij de versterker bevindt; de ,,aarde"-steker komt in de bus daarnaast.

190. Verbind de soldeerlippen 4 en 5 van de transformator door middel van twee in elkaar gedraaide bruine leidingen van elk 14 cm met de lippen 4
en 5 van buishouder II. Denk er aan, en 5 van buishouder II. Denk er aan, aan lip 5 van de transformator bovendien het verbindingsdraadje vanaf lip 6 te solderen. Voer deze draden door het grote gat, dat zich

 aanwezig is.
 250 volt bif een stroom van ca. 15 mA . Wanneer niet de zekerheid bestaat, dat de versterker deze extra elektoch maar het voedingsgedeelte S 20 V in te bouwen.

MONTAGE

Zie de tekeningen X en XI

180. Verwijder het boutje M 3×6 rechts vooraan in de grote montageplaat (rechts boven de afstemas), waarmee de voorplaat is vastgezet.

61

$$
\begin{aligned}
& \text { transformator kan worden bevestigd. Breng tussen } \\
& \text { het snoer en het beugeltje een stukje stevig, dik } \\
& \text { papier of plastic aan, dat voorkomt beschadiging } \\
& \text { van het snoer op deze plaats. } \\
& \text { Belangrijk } \\
& \text { Reken er op dat, zodra de netsteker in het stopcontact is } \\
& \text { gestoken, op verschillende punten in het toestel een } \\
& \text { gevaarlijke elektrische spanning staat. Raak daarom } \\
& \text { Afb. 21. Voedingsgedeelte S } 20 \text { Vingebouwd bij de Pionier S } 113 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { aan de in elkaar gedraaide afscherming, die } \\
& \text { volgens aanwijzing } 146 \text { bij het monteren van de } \\
& \text { steker aan het afgeschermde snoer niet is weg- } \\
& \text { geknipt. Desgewenst kan het kabeltje worden } \\
& \text { afgewerkt met een stukje plastic isolatiekous, dat } \\
& \text { over de beide snoertjes wordt geschoven (zie ook } \\
& \text { afb. 22). } \\
& \text { 197. Monteer een tweede (liefst zwarte) steker aan het } \\
& \text { nog vrije uiteinde van het snoertje, dat aan de } \\
& \text { afscherming is gesoldeerd. } \\
& \text { (Deze tweede steker is niet in de bouwdoos aan- } \\
& \text { wezig en moet dus alsnog worden aangeschaft.) } \\
& \text { 198. Breng de beide stekers aan het afgeschermde snoer } \\
& \text { in de ingangsbussen (de grammofoon-ingang) } \\
& \text { van de versterker. De rode steker moet komen in } \\
& \text { de "gevoelige" ingangsbus, dat is de bus die bij } \\
& \text { aanraking een bromtoon uit de luidspreker } \\
& \text { veroorzaakt. De zwarte steker komt in de tweede, } \\
& \text { bij die ingang behorende bus. In de versterker is } \\
& \text { deze met de montageplaat verbonden. } \\
& \text { 199. Plaats de buizen ECH 81 en EBF 89 in de buis- } \\
& \text { houders van de afstemeenheid (de ECH 81 in } \\
& \text { buishouder I nabij de antenne- en oscillatorspoel; } \\
& \text { de EBF 89 tussen de twee bandfilters in buis- } \\
& \text { houder II). } \\
& \text { 200. Sluit de antenne en eventueel ,aarde" aan. De } \\
& \text { antenne-steker komt in de rechter en de ,aarde"- } \\
& \text { steker in de linker bus (gezien naar de achterzijde } \\
& \text { van de afstemeenheid). } \\
& \text { 201. Controleer of de Iuidspreker op de versterker is } \\
& \text { aangesloten en sluit daarna zowel de versterker als } \\
& \text { de afstemeenheid aan op het stopcontact. Schakel } \\
& \text { de netspanning in met de daarvoor bestemde } \\
& \text { schakelaar(s). }
\end{aligned}
$$

193. Maak de uiteinden van de beide aders van het
netsnoer over bijna 1 cm blank, draai de binnen-
draadjes bij elk der vier blanke gedeelten ineen en
soldeer elk uiteinde, zodat stevige stukjes ontstaan.
Bevestig daarna aan één zijde van het snoer de
netsteker.

Opm. De bediening van het toestel wordt gemakkelijker, indien een netschakelaar wordt aangebracht. Deze schakelaar is echter niet in het pakket $S 20 \mathrm{~V}$ montageplaten worden bevestigd. Bij inbouw in een kastje, hetgeen alle aanbeveling verdient, kan de netschakelaar echter op eenvoudige wijze in de
wand van dit kastje worden gemonteerd wand van dit kastje worden gemonteerd. In
tekening X is aangegeven, hoe de meest gebruikelijke dubbelpolige aan/uit-schakelaar aangesloten

 netschakelaar wordt gebruikt, wordt het netsnoer
rechtstreeks aan de transformator gesoldeed. rechtstreeks aan de transformator gesoldeerd.

> 194. Soldeer het andere uiteinde van het snoer aan twee van de drie soldeerlippen van de transformator,
waaraan nog niet is gesoldeerd. Voor een net-
 en 3, voor een netspanning van 127 volt de
lippen 1 en 2 , zie tekening X. lippen 1 en 2, zie tekening X.
195. Om te voorkomen, dat de tr
195. Om te voorkomen, dat de transformator wordt beschadigd indien per ongeluk aan het snoer
wordt getrokken, verdient het aanbeveling dit laatste vast te zetten. Hiervoor is in het pakket S 20 V een beugeltje aanwezig, waarmee het snoer
bij voorbeeld aan éen van de voetjes van de

202. Wanneer de afstemeenheid juist is gemonteerd en indien niet aan de kernen van de spoelen en bandfilkele zenders beluisterd kunnen worden. Het is
 Aanwijzingen hiervoor zijn opgenomen op blz. 28.

nooit soldeerlippen of blanke draden aan, indien het toestel is aangesloten. (Het chassis van de atstemeenheid kan, bij juiste montage, niet onder spanning staan en $k a n$ dus zonder bezwaar worden aangeraakt.) Verwijder, voor aan de afstemeenheid wordt gewerkt, eerst de steker uit het stopcontact; het uitschakelen door middel

 of hardboard een kastje te maken.
Ook het voedingsgedeelte is nu gereed en de afstemeenheid kan, voor wat betreft de voeding, onafhankelijk
 de zenders is echter nog wel een versterker nodig die
de elektrische trillingen zo veel krachtiger maakt, dat een hoofdtelefoon of een luidspreker er mee kan werken.
Indien alleen met een hoofdtelefoon wordt geluisterd,
moet nog één extra versterkbuis worden ingebouwd.

TECHNISCHEGEGEVENS

Golflengtegebied

Afstemeenheden S 103 en S 113: 187-580 meter (frequentie: $1610-517 \mathrm{kHz}$). De S 103 kan nog van één extra golflengtegebied worden voorzien en de S 113 van twee extra golflengtegebieden (zie de aanwijzingen onder „Enkele praktische wenken"). Onderdelen hiervoor zijn niet in de bouwdozen aanwezig.
Middenfrequentie
452 kHz .

Afregelfrequenties

550 en 1500 kHz .

Buizen

ECH 81 triode/heptode
EBF 89 dubbele diode/pentode.

Afmetingen

Afstemeenheden S 103 en S 113 (maten zonder voedingstransformator): breedte: 16 cm grootste hoogte: 12 cm
diepte: $11,5 \mathrm{~cm}$ (incl. indicatieplaat, zonder stekers en knoppen).

Elektrische spanningen

Afstemeenheid aangesloten op
Knooppunt $\mathrm{R}_{9}-\mathrm{R}_{6}-\mathrm{R}_{4}$
Anode (8) triode ECH 81
Anode (6) heptode ECH 81
2e en 4e rooster (4) heptode ECH 81
Anode (6) EBF 89
2e rooster (2) EBF 89
Gloeispanning ECH 81 - EBF 89 (wisselsp.)

S 201 of S 20 V	S 202		
180	V	192	V
112	V	119	V
179	V	191	V
55	V	60	V
174	V	185	V
42	V	43	V
$6,3 \mathrm{~V}$	$6,3 \mathrm{~V}$		

De gelijkspanningen zijn gemeten met een universeelmeter (20.000 ohm/volt) tussen de montageplaat (het chassis) en de aangegeven punten.

Elektrische stromen

Afstemeenheid aangesloten op
Totaalstroom
Anode triode ECH 81 ($\mathrm{I}_{\mathrm{a}, \mathrm{t}}$)
Anode heptode ECH $81\left(I_{a}, h\right)$
2 e en 4 e rooster ECH $81\left(\mathrm{I}_{\mathrm{g}_{2}}+\mathrm{I}_{g_{4}}\right)$
Anode EBF 89 (I_{a})
2e rooster EBF 89 (g_{2})
Gloeistroom totaal (wisselstroom)

S 201 of S 20 V	S 202
$13,1 \mathrm{~mA}$	$13,8 \mathrm{~mA}$
$3,1 \mathrm{~mA}$	$3,3 \mathrm{~mA}$
$1,1 \mathrm{~mA}$	$1,28 \mathrm{~mA}$
$3,8 \mathrm{~mA}$	$4,0 \mathrm{~mA}$
4 mA	4
$1,1 \mathrm{~mA}$	
$0,6 \mathrm{~A}$	$1,2 \mathrm{~mA}$
	$0,6 \mathrm{~A}$

De afstemcondensator stond tijdens de metingen op maximum capaciteit, terwijl geen antenne was aangesloten. Afwijkingen tot ca. 10% van de aangegeven waarden zijn toelaatbaar en beïnvloeden de goede werking van het toestel niet.

Voedingsgedeelte S 20 V

Het voedingsgedeelte S 20 V kan maximaal 30 mA , anodestroom" en $1,03 \mathrm{~A}$ gloeistroom ($6,3 \mathrm{~V}$) leveren. Reserve na aansluiting van een afstemeenheid S 103 of S 113 dus: ca. 16 mA anodestroom en 0,43 A gloeistroom.
Het voedingsgedeelte kan worden aangesloten op elektriciteitsnetten van 127 V of 220 V (wisselspanning; 50 Hz).
Gelijkrichtcel: SR 250 Y 50.

INHOUD VAN DE AANVULLINGSDOOS PIONIER S 102 A

Aantal of lengte	Omschrijving	Typenummer
1	combinatiebuis	EBF 89
2	m.f.-bandfilters	AP 1001/52
1	koolweerstand (1/4 watt) 1200 ohm	B $8.305 .05 \mathrm{~B} / 1 \mathrm{~K} 2$
1	koolweerstand (1/4 watt) 33.000 ohm	B $8.305 .05 \mathrm{~B} / 33 \mathrm{~K}$
2	koolweerstanden (1/4 watt) 47.000 ohm	B 8.305.05 B/47 K
1	koolweerstand (1/4 watt) 270.000 ohm	B 8.305.05 B/270 K
1	koolweerstand ($1 / 4$ watt) 1.000 .000 ohm	B 8.305.05 A/1 M
1	koolweerstand ($1 / 4$ watt) 2.700 .000 ohm	B $8.305 .05 \mathrm{~A} / 2 \mathrm{M} 7$
1	koolweerstand (1/2 watt) 22.000 ohm	B $8.305 .06 \mathrm{~B} / 22 \mathrm{~K}$
1	koolweerstand ($1 / 2$ watt) $\quad 33.000 \mathrm{ohm}$	B $8.305 .06 \mathrm{~B} / 33 \mathrm{~K}$
1	koolweerstand (1/2 watt) 120.000 ohm	B 8.305.06 B/120 K
1	keramische buiscondensator 68 pF	C 304 AH/A 68 E
1	keramische buiscondensator 100 pF	C $304 \mathrm{AH} / \mathrm{A} 100 \mathrm{E}$
1	keramische buiscondensator $\quad 270 \mathrm{pF}$	C $304 \mathrm{AH} / \mathrm{A} 270 \mathrm{E}$
1	keramische buiscondensator 560 pF	C 304 AH/D 560 E
1	keramische buiscondensator $\quad 3300 \mathrm{pF}$	C $318 \mathrm{BA} / \mathrm{P} 3 \mathrm{~K} 3$
3	keram. „pin-up"-condensatoren 100 pF	C $322 \mathrm{BC} / \mathrm{P} 100 \mathrm{E}$
3	keram. ,"pin-up"-condensatoren 10.000 pF	C $322 \mathrm{BA} / \mathrm{H} 10 \mathrm{~K}$
1	keramische ,pin-up"-condensator 3900 pF	C $322 \mathrm{BA} / \mathrm{H} 3 \mathrm{~K} 9$
1	polyestercondensator $\quad 47.000 \mathrm{pF}$	C 296 AA/A 47 K
1	buishouder (noval)	B 8.700 .19
1	plastic sierdopje	-
2	bevestigingsveren voor bandfilters	A 3.652 .58
1	afstandsbus	G $5814 \mathrm{~N} / \mathrm{C}$
4	dubbele soldeerlippen	B $201 \mathrm{EF} / 3$
1	rubbertule	975/4,5×4
2	boutjes M 3×6	B $054 \mathrm{ED} / 3 \times 6$
2	moeren M 3	B $020 \mathrm{ED} / 3$
1	sluitring 3 mm	B $050 \mathrm{CD} / 3$
2	tandringen 3 mm	B $053 \mathrm{BD} / 3$
25 cm	montagedraad zwart	R $780 \mathrm{KA} / 02 \mathrm{~A}$
40 cm	montagedraad bruin	R $780 \mathrm{KA} / 02 \mathrm{~B}$
20 cm	montagedraad rood	R $780 \mathrm{KA} / 02 \mathrm{C}$
10 cm	montagedraad groen	R $780 \mathrm{KA} / 02 \mathrm{~F}$
20 cm	montagedraad blauw	R $780 \mathrm{KA} / 02 \mathrm{G}$
150 cm	soldeertin	W 994 JB/A 16
INHOUD VAN DE BOUWDOOS PIONIER S 113		
1	combinatiebuis	ECH 81
1	combinatiebuis	EBF 89
1	dubbele afstemcondensator	5127 A
2	instelcondensatoren	7864/01
1	antennespoel	A 3.125 .35
1	oscillatorspoel	A 3.125.72
66		

Aantal	Omschrijving	Typenummer
1	m.f.-filter	A 3.118.80
2	bandfilters	AP 1001/52
2	koolweerstanden ($1 / 4$ watt) 47.000 ohm	B $8.305 .05 \mathrm{~B} / 47 \mathrm{~K}$
1	koolweerstand ($1 / 4$ watt) 1200 ohm	B $8.305 .05 \mathrm{~B} / 1 \mathrm{~K} 2$
1	koolweerstand ($1 / 4 \mathrm{watt}$) 270.000 ohm	B 8.305.05 B/270 K
1	koolweerstand ($1 / 4 \mathrm{watt}$) 1.000 .000 ohm	B $8.305 .05 \mathrm{~A} / 1 \mathrm{M}$
1	koolweerstand ($1 / 4 \mathrm{watt}$) 2.700 .000 ohm	B 8.305.05 A/2 M 7
1	koolweerstand ($1 / 2$ watt) $\quad 22.000 \mathrm{ohm}$	B $8.305 .06 \mathrm{~B} / 22 \mathrm{~K}$
1	koolweerstand ($1 / 2$ watt) $\quad 33.000 \mathrm{ohm}$	B 8.305.06 B/33 K
1	koolweerstand ($1 / 2$ watt) 120.000 ohm	B 8.305.06 B/120 K
1	keramische buiscondensator 10 pF	C $304 \mathrm{AB} / \mathrm{L} 10 \mathrm{E}$
1	keramische buiscondensator 15 pF	C $304 \mathrm{AB} / \mathrm{A} 15 \mathrm{E}$
1	keramische buiscondensator 270 pF	C 304 AC/A 270 E
1	keram. buiscondensator (1% tol.) 470 pF	C $304 \mathrm{AH} / \mathrm{D} 470 \mathrm{E}$
3	keramische buiscondensatoren 10.000 pF	C 304 AA/H 10 K
3	keramische „pin-up"-condensatoren 100 pF	C $322 \mathrm{BC} / \mathrm{P} 100 \mathrm{E}$
1	keramische ,„pin-up'-condensator 68 pF	C $322 \mathrm{BC/P} 68 \mathrm{E}$
1	keramische , ,pin-up"-condensator 330 pF	C $322 \mathrm{BC} / \mathrm{P} 330 \mathrm{E}$
1	keramische , pin -up"-condensator 470 pF	C 322 BC/P 470 E
1	keramische ,,pin-up'-condensator 3900 pF	C $322 \mathrm{BA} / \mathrm{H} 3 \mathrm{~K} 9$
1	polyestercondensator 47.000 pF	C 296 AA/A 47 K
1	grote montageplaat	CH 5806 N/31
2	zijmontageplaten	CH $5702 \mathrm{~N} / 34$
1	indicatieplaat	GD 5806 N/01
2	buishouders (noval)	B 8.700 .19
1	knop (crème)	P 4.872.73/UA
1	plastic sierdopje	-
1	draadsteun	A 3.405.00
1	stekerbusplaat	A 3.382 .13
1	éénpolige steker	$978 / 1 \times 4 \mathrm{AF}$
1	lager	AF 517
1	afstemas	AF 5806 N
1	klemveertje voor as	AF 518
1	snaartrommel	SN 33/6
1	snaarwieltje	965/2,65 $\times 14$
1	wijzer	GD 5806 N
4	koppelstrippen	CH $5813 \mathrm{~N} / 50$
3	afstandsbussen (voor condensator)	G $5814 \mathrm{~N} / \mathrm{C}$
2	afstandsbussen (voor indicatieplaat)	G $5805 \mathrm{~N} / \mathrm{I}$
	afstandsbus (voor snaarwieltje)	G $5814 \mathrm{~N} / \mathrm{A}$
3	bevestigingsveren (voor spoelen)	A 3.652 .58
1	bevestigingsveer (voor m.f.-filter)	A 3.652 .75
1	trekveertje	964/6×17
3	kleine rubbertulen	975/4,5×4
3	dubbele soldeerlippen	B $201 \mathrm{EF} / 3$
3	busjes (voor aandrijfkoord)	G991

Aantal of lengte	Omschrijving	Typenummer
20	boutjes M 3×6	B $054 \mathrm{ED} / 3 \times 6$
4	boutjes M 3×10	B $054 \mathrm{ED} / 3 \times 10$
1	boutje M $2,6 \times 15$	B 054 ED/2,6×15
2	boutjes M 3×25	B $054 \mathrm{GL} / 3 \times 25$
1	stelboutje M 4×5	B $061 \mathrm{ED} / 4 \times 5$
1	stelboutje M 4×10	B 061 ED/4× 10
28	moeren M 3	B $020 \mathrm{ED} / 3$
2	moeren M 2,6	B 020 ED/2,6
1	moer (voor lager)	MG $1 / 8{ }^{\prime \prime} \mathrm{G}$
4	sluitringen 3 mm	B $050 \mathrm{CD} / 3$
30	tandringen 3 mm	B $053 \mathrm{BD} / 3$
1	tandring 10 mm	B $053 \mathrm{BD} / 10$
40 cm	montagedraad blank	R $239 \mathrm{JB} / \mathrm{D} 07$
25 cm	montagedraad zwart	R $780 \mathrm{KA} / 02 \mathrm{~A}$
35 cm	montagedraad bruin	R $780 \mathrm{KA} / 02 \mathrm{~B}$
35 cm	montagedraad rood	R $780 \mathrm{KA} / 02 \mathrm{C}$
60 cm	montagedraad geel	R $780 \mathrm{KA} / 02 \mathrm{E}$
15 cm	montagedraad groen	R $780 \mathrm{KA} / 02 \mathrm{~F}$
15 cm	montagedraad blauw	R $780 \mathrm{KA} / 02 \mathrm{G}$
40 cm	afgeschermd snoer	R $367 \mathrm{KA} / 02 \mathrm{BB} 10$
150 cm	soldeertin	W 994 JB/A 16
100 cm	aandrijfkoord	GD 13

INHOUD VAN HET VOEDINGSPAKKET PIONIER S 20 V

1	voedingstransformator		AD 9042
1	koolweerstand (1 watt)	3900 ohm	B 8.305.07 B/3 K 9
1	koolweerstand (1 watt)	10.000 ohm	B 8.305.07 B/10 K
1	gelijkrichtcel		SR 250 Y 50
1	elektrolytische condensator	$16+16 \mu \mathrm{~F}$	AC 5207/16+16
1	plastic bevestigingsstrip		E 2.288 .28
1	metalen hoekje		$910 / 18 \times 110$
5	boutjes M 3×10		B $054 \mathrm{ED} / 3 \times 10$
2	boutjes M 3×15		B $054 \mathrm{ED} / 3 \times 15$
7	moeren M 3		B $020 \mathrm{ED} / 3$
6	sluitringen		B $050 \mathrm{CD} / 3$
7	tandringen 3 mm		B $053 \mathrm{BD} / 3$
1	dubbele soldeerlip		B $201 \mathrm{EF} / 3$
,	beugeltje voor netsnoer		R $205 \mathrm{AD} / 1 \times 6 \times 10$
20 cm	montagedraad zwart		R $780 \mathrm{KA} / 02 \mathrm{~A}$
70 cm	montagedraad bruin		R $780 \mathrm{KA} / 02 \mathrm{~B}$
20 cm	montagedraad rood		R $780 \mathrm{KA} / 02 \mathrm{C}$
40 cm	montagedraad grijs		R $780 \mathrm{KA} / 02 \mathrm{~J}$
50 cm	soldeertin		W $994 \mathrm{JB} / \mathrm{A} 16$
150 cm	netsnoer		R $216 \mathrm{KN} / 05 \mathrm{~A}$
1	netsteker		978/2×19 AA

PHILIPS PIONIER SENIOR-SERIE

Abstract

radio-afstemeenheden versterkers | Pionier S 101 | | bouwdoos voor éénkrings-afstemeenheid |
| :---: | :---: | :---: |
| Pionier S 101 A | --- | aanvullingsdoos voor uitbreiding van de Pionier |
| | | S 101 tot Pionier S 102 (tweekrings-afstemeenheid) |
| Pionier S 102 A | - | aanvullingsdoos voor uitbreiding van de Pionier S 102 tot Pionier S 103 (super-afstemeenheid) |
| Pionier S 113 | - | bouwdoos voor AM-super-afstemeenheid \star |
| Pionier S 20 V | - | voedingspakket, voor inbouw in een afstemeenheid |
| Pionier S 201 | - | bouwdoos voor een 0,5 watt-versterker |
| Pionier S 202 | - | bouwdoos voor een 2 watt-versterker | *) Deze bouwdozen zijn exclusief voedingsgedeelte. Philips bouwdozen zijn verkrijgbaar bij de radiohandel.

ERRATA

In de bouwbeschrijvingen van de „Pionier Senior" super-afstemeenheden ontbreken de waarden van verschillende onderdelen. De onderstaande teksten kunnen worden uitgeknipt en bij de betrokken tekeningen worden geplakt.

Bij tekening II - blz. 22:
C_{6} - polyestercondensator 47.000 pF (47 K)
C_{7}. keramische condensator 10 pF
C_{12}. keramische condensator 68 pF
Bij tekening III - blz. 24a:
Keramische condensatoren:
$C_{10} \cdot 560 \mathrm{pF} / 1 \%$
$C_{11} \cdot 270 \mathrm{pF}$
$C_{14} \cdot 100 \mathrm{pF}$
$C_{17}-3.300{ }_{p F}(3 \mathrm{~K} 3)$
Bij tekening V - blz. 51:
Typenummer oscillatorspoel: A3.125.72
Typenummer antennespoel: A3.125.35

Bij tekening VI - blz. 52:
C_{6} - polyestercondensator 47.000 pF (47 K)
C_{1} kan ook buiscondensator zün
Bij tekening VII - blz. 56:
Keramische condensatoren:
$C_{7} \cdot 10 \mathrm{pF}$
$C_{11} \cdot 270 p F$
$C_{21} \cdot 470 \mathrm{pF} / 1 \%$ (buiscondensator)
$C_{22} \cdot 15 p F$
C_{4}^{22} en C_{13} kunnen ook buiscondensatoren zün Bij tekening XI - blz. 61a:
$C_{23}+C_{24}$:
elektrolytische condensator
$16+16{ }_{\mu} F / 300 V$

PHIIIPS PHILIPS NEDERLAND n.v. - EINDHOVEN

EL 85 /1388

